Multi-Key Homomorphic Secret Sharing

From Theory To Practice

Multi-Key Homomorphic Secret Sharing

Geoffroy Couteau, Lali Devadas, Aditya Hegde, Abhishek Jain, Sacha Servan-Schreiber

Roadmap

- 1. Summary of our contributions
 - a. Motivating example: two-party succinct secure computation
 - b. Define multi-key homomorphic secret sharing (MKHSS)
 - c. Application: non-interactive conditional key exchange
- 2. Background on HSS from DCR
- 3. Constructing MKHSS from the DCR assumption

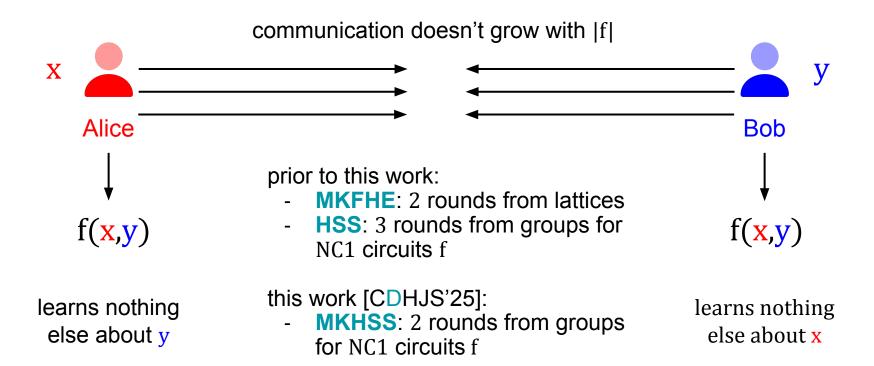
next: Kevin will talk about optimized implementations of MKHSS/key exchange

Roadmap

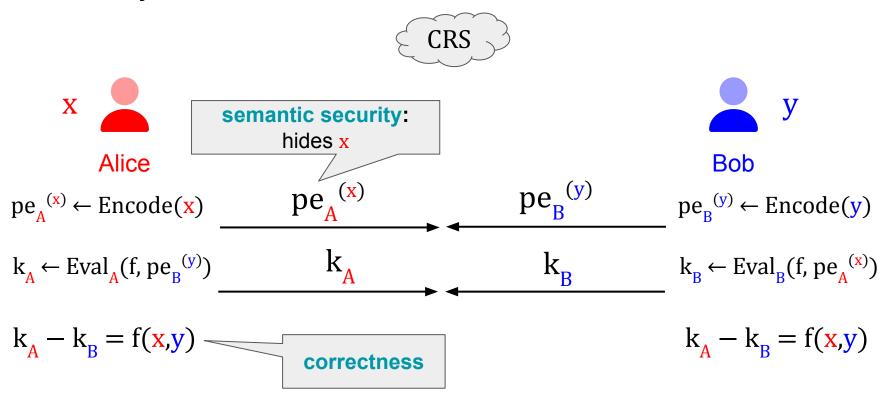
- 1. Summary of our contributions
 - a. Motivating example: two-party succinct secure computation
 - b. Define multi-key homomorphic secret sharing (MKHSS)
 - c. Application: non-interactive conditional key exchange
- 2. Background on HSS from DCR
- 3. Constructing MKHSS from the DCR assumption

next: Kevin will talk about optimized implementations of MKHSS/key exchange

Motivation: Two-Party Succinct Secure Computation



Multi-Key HSS [CDHJS'25]



Our results [CDHJS'25]

we construct multi-key HSS for NC1 circuits from any of the following:

- Decisional Diffie-Hellman (DDH)
- DDH-like assumptions over class groups
- Decisional Composite Residuosity (DCR)

this talk

this the first two-round succinct secure computation protocol from group-based assumptions for NC1 circuits.

Applications [CDHJS'25]

MKHSS achieves our goal of two-round succinct secure computation.

Q: after exchanging simultaneous messages, Alice and Bob have subtractive shares of the output – are there applications where this is sufficient?

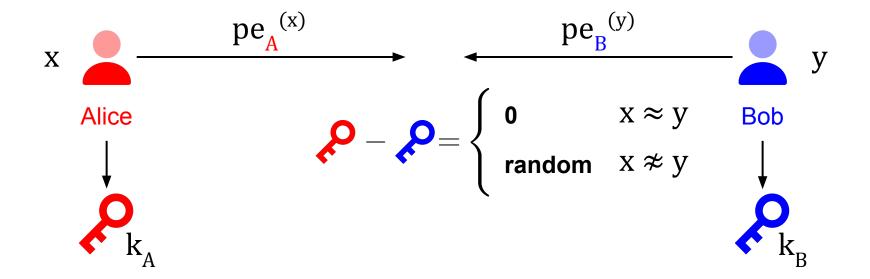
A: yes!

this talk

subtractive structure of shares also gives interesting non-interactive applications

- non-interactive conditional key exchange
- public-key pseudorandom correlation functions
- silent preprocessing secure computation

Application: Non-interactive Conditional Key Exchange



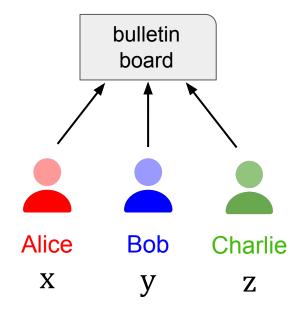
Application: Non-interactive Conditional Key Exchange



Added Benefit: Reusability

correlated setup Alice Bob Charlie \mathbf{Z}

non-interactive setup



Roadmap

- 1. Summary of our contributions
 - a. Motivating example: two-party succinct secure computation
 - b. Define multi-key homomorphic secret sharing (MKHSS)
 - c. Application: non-interactive conditional key exchange
- Background on HSS from DCR
- 3. Constructing MKHSS from the DCR assumption

next: Kevin will talk about optimized implementations of MKHSS/key exchange

HSS template [Boyle-Gilboa-Ishai'16]

we make this setup non-interactive

- 0. assume that Alice and Bob have pk and shares of sk
- 1. they exchange encodings of their inputs x and y under pk
- 2. they perform local computations to obtain shares of output f(x,y)

next we will see how *input encodings* and *local computations* work for HSS from DCR [OSY'21] (with some helpful modifications)

Input encodings: Paillier-ElGamal encryptions

Input_Encode(
$$pk$$
, x) = ($Enc_{pk}(x \cdot sk)$, $Enc_{pk}(x)$)

N = product of two safe primes g = generator of the $2N^{th}$ residue subgroup of $Z_{N^2}^*$

for HSS from DCR, these are Paillier-ElGamal encryptions [BCP'03]

$$sk \leftarrow S[N]$$
 $pk = g^{-sk} \mod N^2$ $Enc_{pk}(x) = (g^r \mod N^2, pk^r (1+N)^x \mod N^2)$

we will use a "flipped encryption" for the other component

$$\operatorname{Enc}_{\operatorname{pk}}(\mathbf{x} \cdot \mathbf{sk}) = (\mathbf{g}^{\operatorname{r}} (1+\mathbf{N})^{\operatorname{x}} \operatorname{mod} \mathbf{N}^{2}, \mathbf{pk}^{\operatorname{r}} \operatorname{mod} \mathbf{N}^{2})$$

(this helps us later because it can be computed without knowing sk)

Input encodings: Paillier-ElGamal encryptions

another helpful note for later:

$$pk = g^{-sk} \qquad Enc_{nk}(x) = (g^r, pk^r (1+N)^x)$$

what happens if we do $(pk^r (1+N)^x)^{sk'}$ for some sk'?

we end up with a ciphertext of $x \cdot sk'$ with respect to public key $pk^{sk'}$:

$$(g^{r}, (pk^{sk'})^{r} ((1+N)^{x})^{sk'}) = (g^{r}, (g^{sk \cdot sk'})^{r} (1+N)^{x \cdot sk'})$$

also a ciphertext which decrypts to $x \cdot sk'$ using secret key $sk \cdot sk'$.

morally multiplying message and secret key by same value sk'

Local computations: RMS multiplication

our HSS supports evaluating RMS multiplication programs:

- start with input encodings
- intermediate computation values are computed as *memory shares*
- values held in memory shares can only be multiplied by values held in input encodings, not other values held in memory shares

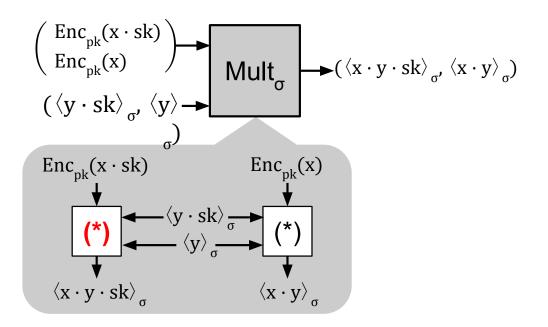
```
input encoding of x: Input_Encode(pk, x) = ( \text{Enc}_{pk}(x \cdot sk), \text{Enc}_{pk}(x))

memory share of y: subtractive shares (\langle y \cdot sk \rangle_{\sigma}, \langle y \rangle_{\sigma})

y = \langle y \rangle_{A}
```

need to be able to compute a memory share of xy given these

RMS multiplication: high level idea [Boyle-Gilboa-Ishai'16]



High level idea of (*):

- Decrypt ciphertext
- 2) Multiply plaintext by y in secret-shared form.

OSY'21 shows how to do this for DCR encodings

this computation requires **modular exponentiations**

Roadmap

- 1. Summary of our contributions
 - a. Motivating example: two-party succinct secure computation
 - b. Define multi-key homomorphic secret sharing (MKHSS)
 - c. Application: non-interactive conditional key exchange
- 2. Background on HSS from DCR
- 3. Constructing MKHSS from the DCR assumption

next: Kevin will talk about optimized implementations of MKHSS/key exchange

Removing correlated setup [CDHJS'25]

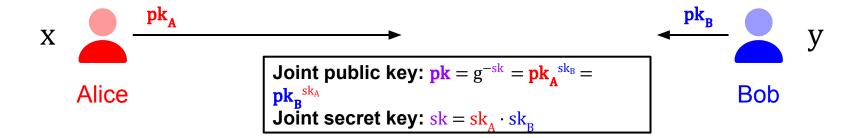
- 0. assume that Alice and Bob have pk and shares of sk
- 1. they exchange encodings of their inputs x and y under pk
- 2. they perform local computations to obtain shares of output f(x,y)

now we will see how to remove the assumption in 1 by having Alice and Bob

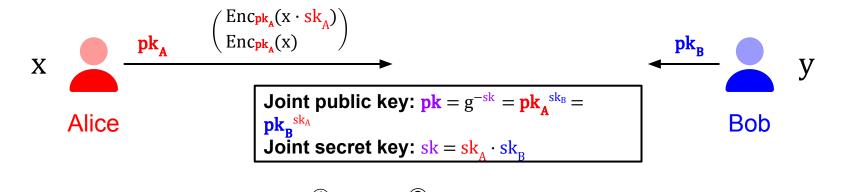
- use Diffie-Hellman key exchange to agree on a joint pk
- synchronize their input encodings under the joint pk -
- (shares of joint sk are easy to generate with existing tools)

the rest of my part of the talk

Alice and Bob agree on joint key



Synchronizing Alice's input encoding

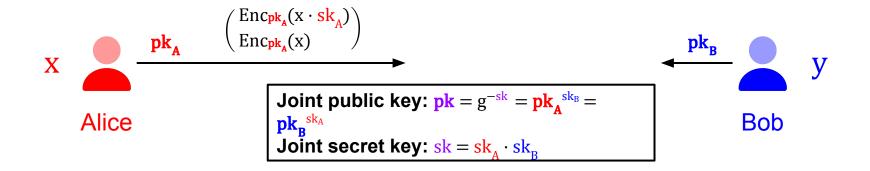


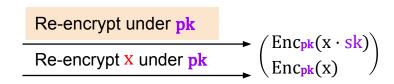
both Alice and Bob need to compute Alice's synchronized input encoding:

$$\begin{pmatrix} \operatorname{Enc_{pk}}(\mathbf{x} \cdot \mathbf{sk}) \\ \operatorname{Enc_{pk}}(\mathbf{x}) \end{pmatrix}$$

(Bob's encoding is synchronized symmetrically)

1: Alice syncs her own share

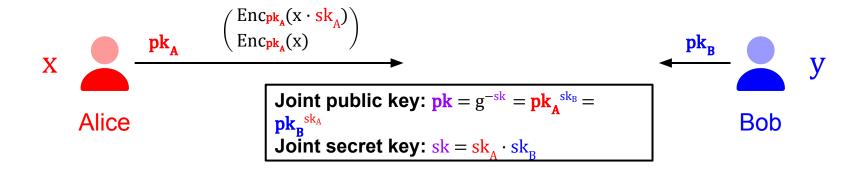




Flipped encryption:

Can compute without knowing secret key.

2: Bob syncs Alice's share



$$\left(\frac{Enc_{\textbf{pk}_{\textbf{A}}}(\textbf{x} \cdot \textbf{sk}_{\textbf{A}})}{Enc_{\textbf{pk}_{\textbf{A}}}(\textbf{x})} \right) \underbrace{\frac{\text{Multiply message/key by sk}_{\textbf{B}}}{\text{Multiply message/key by sk}_{\textbf{B}}}} \left(\frac{Enc_{\textbf{pk}}(\textbf{x} \cdot \textbf{sk})}{Enc_{\textbf{pk}}(\textbf{x} \cdot \textbf{sk})} \right)$$

Problem: junk term sk_R

plaintext space = [N] solve by $sk_B = 1 \mod N!$ but...

Issue with circular encryptions

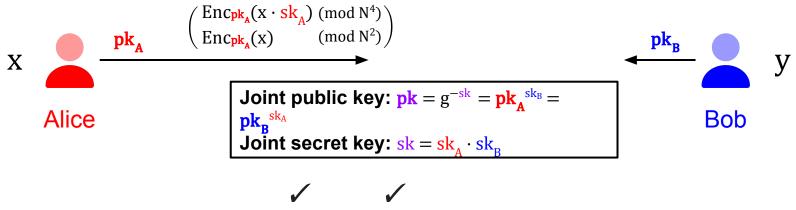
problem: if sk is always 1 mod N, then we can no longer encode $x \cdot sk$ in a plaintext space of [N]

- recall that plaintexts are encoded in the exponent of (1+N), which has order N

solution: compute circular encryptions mod N⁴ instead of mod N²! (i.e., generalized Damgard-Jurik encryptions)

in $Z_{N^4}^*$, the element (1+N) has order N^3 , so we have a plaintext space large enough to encode $x \cdot sk$

Alice's input encoding



both Alice and Bob need to compute Alice's synchronized input encoding:

$$\begin{pmatrix} \operatorname{Enc_{pk}}(\mathbf{X} \cdot \mathbf{Sk}) \pmod{N^4} \\ \operatorname{Enc_{pk}}(\mathbf{X}) \pmod{N^2} \end{pmatrix}$$

Why is sampling the secret key this way secure?

- instead of sampling sk ←\$ [N], we now sample sk' ←\$ {0,...,N-1} and set sk = sk'
 · N + 1 so that sk = 1 mod N
- note that g has order $\phi(N)/4$, which is coprime to N
- so the distribution over public keys $pk = g^{-sk}$ remains statistically close to the old distribution over public keys

Aside: Short Exponent Assumption

essentially says: sampling much shorter sk is still secure

- for this construction, no need to make this assumption to prove security
 - construction for class groups does require making this assumption
- but it allows sampling *much smaller keys* in practice
 - no longer have statistical closeness to original distribution of Pailler ElGamal public keys

Roadmap

- 1. Summary of our contributions
 - a. Motivating example: two-party succinct secure computation
 - b. Define multi-key homomorphic secret sharing (MKHSS)
 - c. Application: non-interactive conditional key exchange
- 2. Background on HSS from DCR
- 3. Constructing MKHSS from the DCR assumption

next: Kevin will talk about optimized implementations of MKHSS/key exchange

Concretely-Efficient Multi-Key Homomorphic Secret Sharing and **Applications**

Kaiwen (Kevin) He, Sacha Servan-Schreiber, Geoffroy Couteau, Srini Devadas

To appear at IEEE S&P 2026

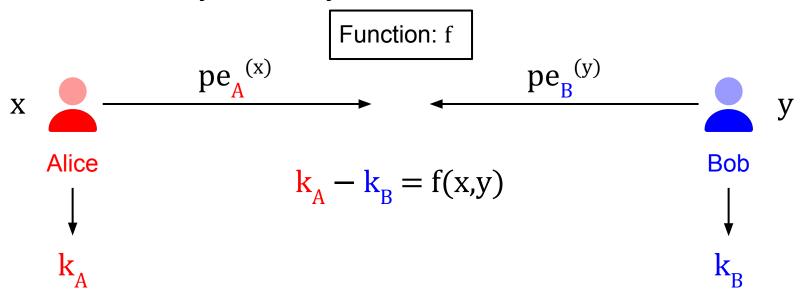
Roadmap

- 1. Overview of our work
- 2. MKHSS optimizations
- 3. Non-interactive conditional key exchange optimizations
- 4. Useful instantiations of key exchange
 - a. Fuzzy password-authenticated key exchange
 - b. Geolocation-based key exchange
- 5. Performance evaluation
- 6. Future works and conclusion

Roadmap

- 1. Overview of our work
- 2. MKHSS optimizations
- 3. Non-interactive conditional key exchange optimizations
- 4. Useful instantiations of key exchange
 - a. Fuzzy password-authenticated key exchange
 - b. Geolocation-based key exchange
- 5. Performance evaluation
- 6. Future works and conclusion

Recall: Multi-Key HSS Syntax [CDHJS'25]

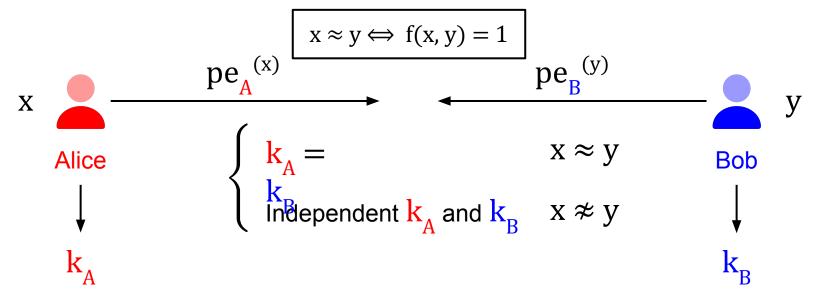


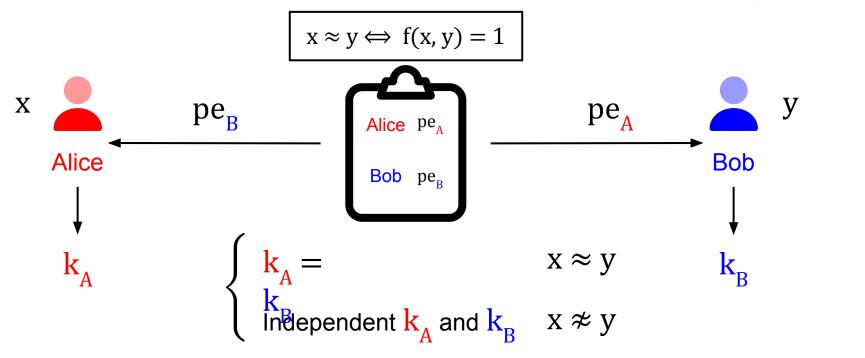
$$pe_{A}^{(x)}, st_{A} \leftarrow Encode(x)$$

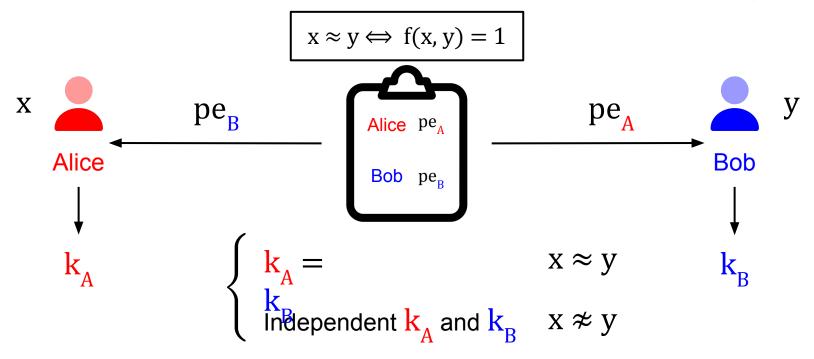
$$Encode(y) \rightarrow pe_{B}^{(y)}, st_{B}$$

$$k_{A} \leftarrow Eval_{A}(f, pe_{B}^{(y)}, st_{A})$$

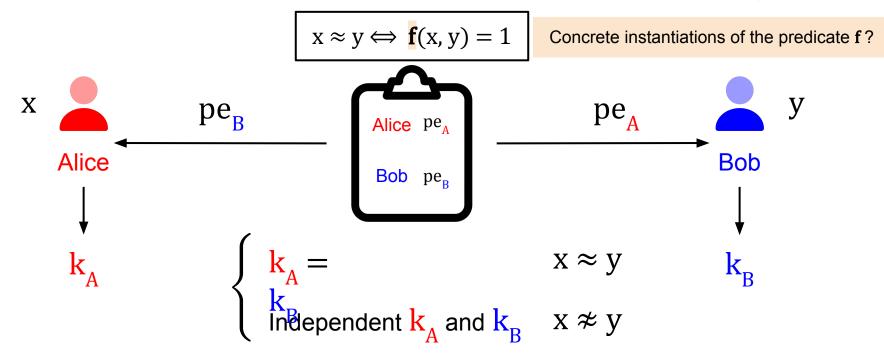
$$Eval_{B}(f, pe_{A}^{(x)}, st_{B}) \rightarrow k_{B}$$





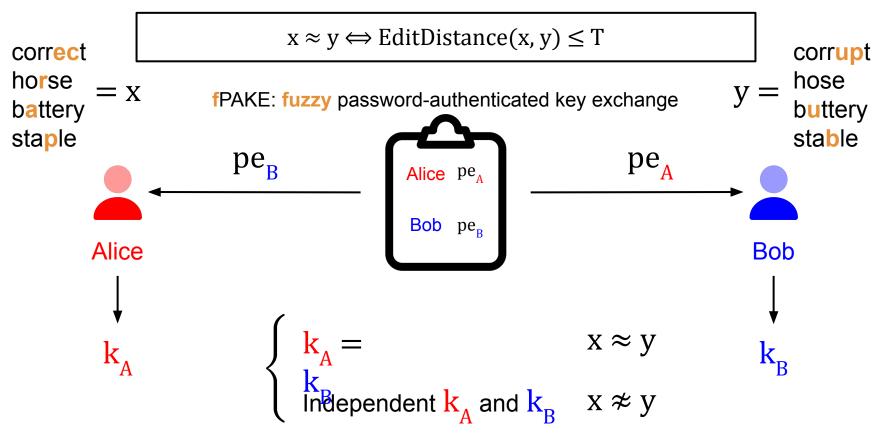


A natural generalization of Diffie-Hellman-style key exchange [DH'76, FHKP'13]

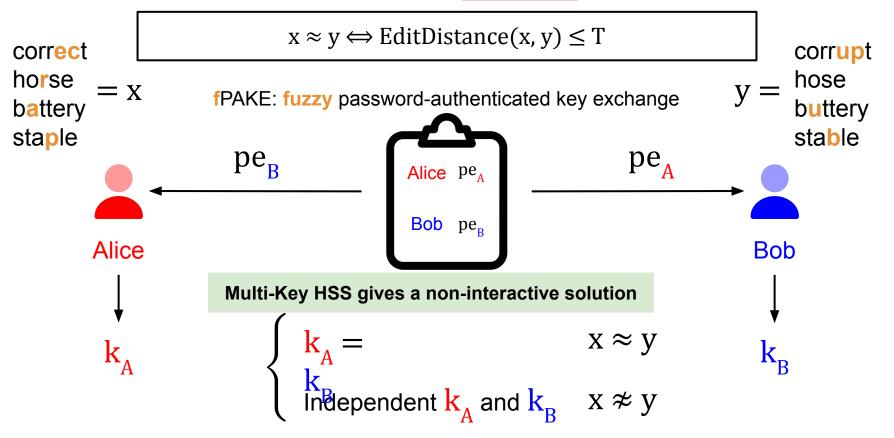


A natural generalization of Diffie-Hellman-style key exchange [DH'76, FHKP'13]

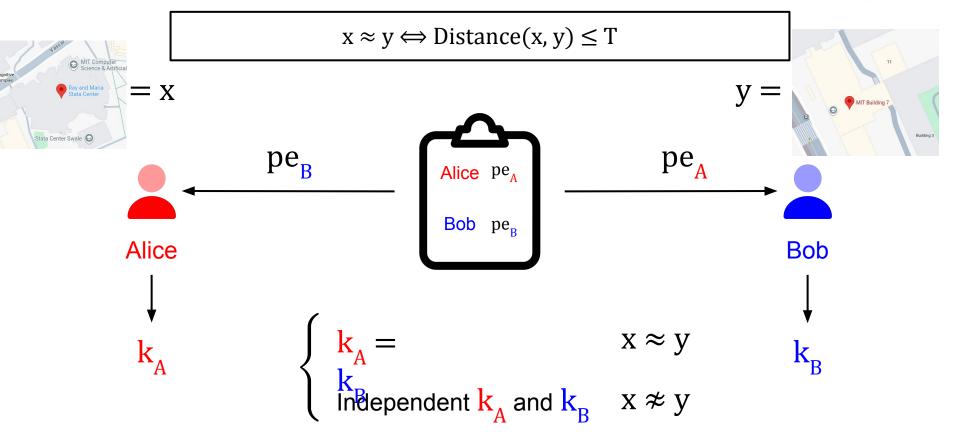
Concrete Instantiation: fPAKE [DHPRY'18]



Concrete Instantiation: fPAKE [DHPRY'18]



Concrete Instantiation: Geolocation-Based Key Exchange

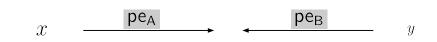


Prior work [CDHJS'25]



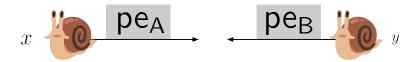
X Theoretical feasibility result, no code

Our work



Open-source implementation

Prior work [CDHJS'25]

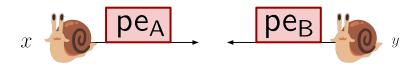


- X Theoretical feasibility result, no code
- X A multiplication takes **224.6 ms** (if implemented)

Our work

- Open-source implementation
- A multiplication takes 5.0 ms (45× speedup)

Prior work [CDHJS'25]

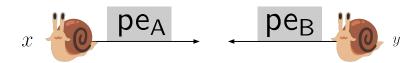


- X Theoretical feasibility result, no code
- X A multiplication takes **224.6 ms** (if implemented)
- X Large communication overhead

Our work

- Open-source implementation
- A multiplication takes 5.0 ms (45× speedup)
- ✓ 3× reduction in communication for all apps

Prior work [CDHJS'25]



- X Theoretical feasibility result, no code
- X A multiplication takes **224.6 ms** (if implemented)
- X Large communication overhead
- X Did not develop concrete applications
 - Mentioned fPAKE in passing without giving a concrete instantiation

Our work

- ✓ Open-source implementation
- A multiplication takes 5.0 ms (45× speedup)
- 3× reduction in communication for all apps
- Identifies two useful applications of MKHSS:
 - fPAKE
 - Geolocation-based key exchange

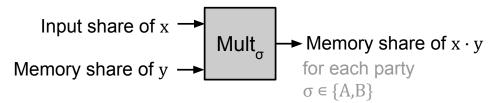
In addition, each app runs in a few seconds.

Roadmap

- 1. Overview of our work
- 2. MKHSS optimizations
- 3. Non-interactive conditional key exchange optimizations
- 4. Useful instantiations of key exchange
 - a. Fuzzy PAKE
 - b. Geolocation-based key exchange
- 5. Performance evaluation
- 6. Future works and conclusion

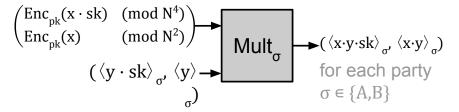
Bottleneck of (MK)HSS: RMS Multiplication

RMS Multiplication



Bottleneck of (MK)HSS: RMS Multiplication

Prior work [CDHJS'25]



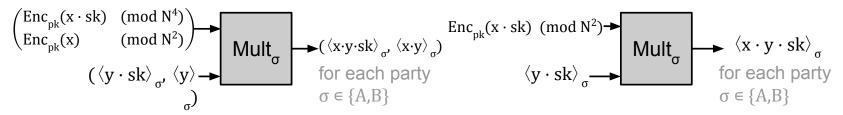
Notation

$$\begin{aligned} \mathbf{x} &= \left\langle \mathbf{x} \right\rangle_{\mathbf{A}} - \left\langle \mathbf{x} \right\rangle_{\mathbf{B}} \\ &\text{Enc}_{\mathbf{pk}}(\mathbf{x}) = (\mathbf{g}^{\mathbf{r}}, \mathbf{pk}^{\mathbf{r}} \cdot (1 + \mathbf{N})^{\mathbf{x}}) \text{ [BCP'03, DJ'03]} \end{aligned}$$

Overview Of Our Optimizations

Prior work [CDHJS'25]

Our work



Notation

$$\begin{split} &x = \left< x \right>_A - \left< x \right>_B \\ &Enc_{nk}(x) = (g^r, pk^r \cdot (1+N)^x) \text{ [BCP'03, DJ'03]} \end{split}$$

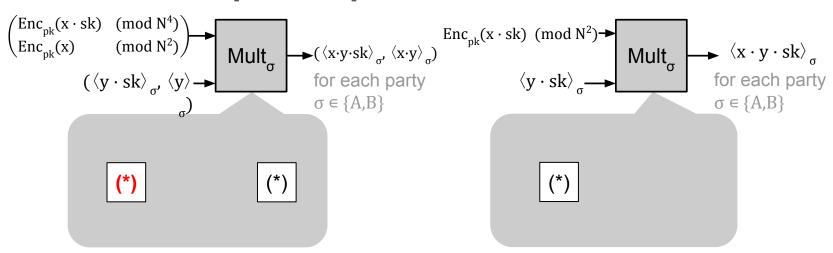
Overview Of Our Optimizations

Notation

$$x = \langle x \rangle_A - \langle x \rangle_B$$

Prior work [CDHJS'25]

Our work



(*) : two exponentiations mod N⁴

*) \mid : two exponentiations mod N^2

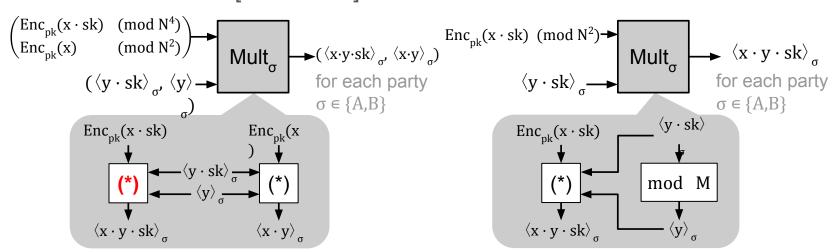
Overview Of Our Optimizations

Notation

 $\begin{array}{l} \mathbf{x} = \left\langle \mathbf{x} \right\rangle_{\mathrm{A}} - \\ \left\langle \mathbf{x} \right\rangle_{\mathrm{R}} \end{array}$

Prior work [CDHJS'25]

Our work



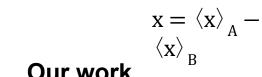
A key procedure used by much of the HSS literature [BGI'16]

(*) : two exponentiations mod N⁴

(*) : two exponentiations mod N²

Key Procedure of Our Work

Prior work [CDHJS'25]

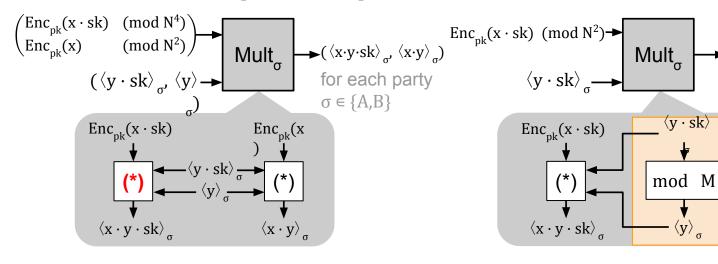


Notation

for each party

 $\sigma \in \{A,B\}$

Our work



Key procedure of our work

: two exponentiations mod N⁴

: two exponentiations mod N²

Simplifying Input Shares

Notation

$$\begin{array}{l} \mathbf{x} = \left\langle \mathbf{x} \right\rangle_{\mathrm{A}} - \\ \left\langle \mathbf{x} \right\rangle_{\mathrm{B}} \end{array}$$

Input Share Prior work [CDHJS'25]

 $(\text{mod } N^4)$

 $(\text{mod } N^2)$

 $(\langle y \cdot sk \rangle_{\sigma'} \langle y \rangle \rightarrow$

 $Enc_{nk}(x \cdot sk)$

 $\langle \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{s} \mathbf{k} \rangle_{\mathbf{g}}$

 $\operatorname{Enc}_{\operatorname{pk}}(\mathbf{x} \cdot \mathbf{sk})$

 $\operatorname{Enc}_{\operatorname{nk}}(x)$

Mult

 $Enc_{pk}(x)$

for each party

 $\sigma \in \{A,B\}$

Input Share

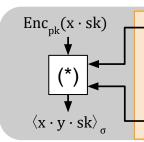
Our work

 $\langle \mathbf{y} \cdot \mathbf{s} \mathbf{k} \rangle$

mod M

 $\langle y \rangle_{\sigma}$

 $\operatorname{Enc}_{\operatorname{pk}}(\mathbf{x} \cdot \operatorname{sk}) \pmod{\mathsf{N}^2}$ $\leftarrow (\langle x \cdot y \cdot sk \rangle_{\sigma}, \langle x \cdot y \rangle_{\sigma})$ Mult $\langle \mathbf{y} \cdot \mathbf{s} \mathbf{k} \rangle_{\mathbf{z}}$ for each party $\sigma \in \{A,B\}$



Key procedure of our work

Crucially simplifies **input share** structure.

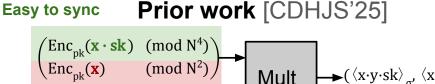
: two exponentiations mod N⁴

: two exponentiations mod N²

Making Share Synchronization Easier

Notation

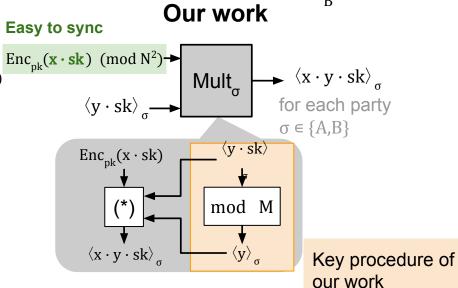
$$x = \langle x \rangle_A - \langle x \rangle_B$$



Hard to sync $(\langle y \cdot sk \rangle_{\sigma}, \langle y \rangle)$ $(\langle x \cdot y \cdot sk \rangle_{\sigma}, \langle x \cdot y \rangle_{\sigma})$ for each party $\sigma \in \{A, B\}$ $Enc_{nk}(x \cdot sk)$ $Enc_{nk}(x)$ $Enc_{nk}(x)$ $Enc_{nk}(x)$

Share synchronization [CDHJS'25] is a key step to realize multi-key HSS.

(*) : two exponentiations mod N⁴

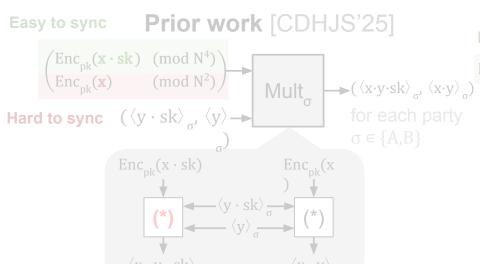


Crucially simplifies **input share** structure.

(*) : two exponentiations mod N^2

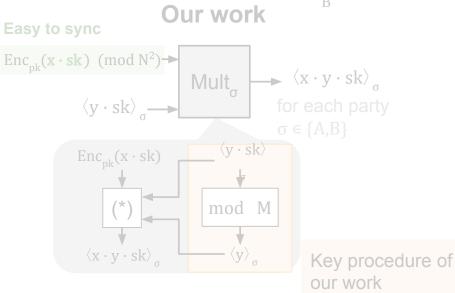
Making Share Synchronization Easier

Notation $x = \langle x \rangle_A - \langle x \rangle_B$



Share synchronization [CDHJS'25] is a key step to realize multi-key HSS.

(*) : two exponentiations mod N⁴



Crucially simplifies input share structure.

(*) : two exponentiations mod N²

Input share before: $\begin{pmatrix} \operatorname{Enc}_{pk}(x \cdot \operatorname{sk}) & (\operatorname{mod} N^4) \\ \operatorname{Enc}_{pk}(x) & (\operatorname{mod} N^2) \end{pmatrix}$

Cheatsheet

Secret keys of Alice and Bob: sk_A , sk_B Joint secret key: $sk = sk_A \cdot sk_B$

Public key of party σ : $pk_{\sigma} \equiv g^{-sk_{\sigma}} \pmod{N^{w+1}}$ Joint public key: $pk \equiv g^{-sk} \equiv pk_{A}^{sk_{B}} \equiv pk_{B}^{sk_{A}} \pmod{N^{w+1}}$

```
Input share before: \begin{pmatrix} \operatorname{Enc}_{pk}(x \cdot sk) & (\operatorname{mod} N^4) \\ \operatorname{Enc}_{pk}(x) & (\operatorname{mod} N^2) \end{pmatrix}
```

Easy to synchronize $\operatorname{Enc}_{nk}(x \cdot sk)$:

$$\operatorname{Enc}_{\mathbf{pk}}(\mathbf{x} \cdot \mathbf{sk}) = \operatorname{Mul}(\operatorname{Enc}_{\mathbf{pk_A}}(\mathbf{x} \cdot \mathbf{sk_A}), \mathbf{sk_B})$$

Cheatsheet

Secret keys of Alice and Bob: sk_A , sk_B

Joint secret key: $sk = sk_A \cdot sk_B$

Public key of party σ : $\mathbf{pk}_{\sigma} \equiv g^{-sk_{\sigma}} \pmod{N^{w+1}}$ Joint public key: $\mathbf{pk} \equiv g^{-sk} \equiv \mathbf{pk_A}^{sk_B} \equiv \mathbf{pk_B}^{sk_A} \pmod{N^{w+1}}$

```
Input share before: \begin{pmatrix} \operatorname{Enc}_{\operatorname{pk}}(\mathbf{x} \cdot \operatorname{sk}) & (\operatorname{mod} N^4) \\ \operatorname{Enc}_{\operatorname{pk}}(\mathbf{x}) & (\operatorname{mod} N^2) \end{pmatrix}
```

Easy to synchronize $Enc_{nk}(x \cdot sk)$:

$$\operatorname{Enc}_{\mathbf{pk}}(\mathbf{x} \cdot \mathbf{sk}) = \operatorname{Mul}(\operatorname{Enc}_{\mathbf{pk_A}}(\mathbf{x} \cdot \mathbf{sk_A}), \mathbf{sk_B})$$

Hard to synchronize $\operatorname{Enc}_{nk}(x)$:

$$\operatorname{Enc}_{\mathbf{pk}}(\mathbf{x}) = \operatorname{Enc}_{\mathbf{pk}}(\mathbf{x} \cdot \mathbf{sk}_{\mathbf{B}}) = \operatorname{Mul}(\operatorname{Enc}_{\mathbf{pk}_{\mathbf{A}}}(\mathbf{x}), \mathbf{sk}_{\mathbf{B}})$$
Requires $\mathbf{sk}_{\mathbf{p}} = \mathbf{sk}_{\mathbf{p}}' \cdot \mathbf{N} + 1$ (Likewise for $\mathbf{sk}_{\mathbf{A}}$)

Cheatsheet

Secret keys of Alice and Bob: $sk_{A'}$, sk_{B} Joint secret key: $sk = sk_{A} \cdot sk_{B}$

Public key of party σ : $\mathbf{pk}_{\sigma} \equiv g^{-sk_{\sigma}} \pmod{N^{w+1}}$ Joint public key: $\mathbf{pk} \equiv g^{-sk} \equiv \mathbf{pk_A}^{sk_B} \equiv \mathbf{pk_B}^{sk_A} \pmod{N^{w+1}}$

Input share before: $\begin{pmatrix} \operatorname{Enc}_{pk}(x \cdot \operatorname{sk}) & (\operatorname{mod} N^4) \\ \operatorname{Enc}_{nk}(x) & (\operatorname{mod} N^2) \end{pmatrix}$

Easy to synchronize $Enc_{nk}(x \cdot sk)$:

$$\operatorname{Enc}_{\mathbf{pk}}(\mathbf{x} \cdot \mathbf{sk}) = \operatorname{Mul}(\operatorname{Enc}_{\mathbf{pk_A}}(\mathbf{x} \cdot \mathbf{sk_A}), \mathbf{sk_B})$$

Hard to synchronize $\frac{Enc_{nk}(x)}{}$:

$$\operatorname{Enc}_{\mathbf{pk}}(\mathbf{x}) = \operatorname{Enc}_{\mathbf{pk}}(\mathbf{x} \cdot \mathbf{sk}_{\mathbf{B}}) = \operatorname{Mul}(\operatorname{Enc}_{\mathbf{pk}_{\mathbf{A}}}(\mathbf{x}), \mathbf{sk}_{\mathbf{B}})$$

Requires $sk_B = sk_B' \cdot N + 1$ (Likewise for sk_A)

Problem: large joint secret key:

$$|\mathbf{x} \cdot \mathbf{sk}| \approx \mathbf{N}^2 \cdot |\mathbf{x}| \cdot |\mathbf{sk}_{\mathbf{A}}| \cdot |\mathbf{sk}_{\mathbf{B}}| \gg \mathbf{N}^2$$

Cheatsheet

Secret keys of Alice and Bob: sk_A , sk_B

Joint secret key: $sk = sk_A \cdot sk_B$

Public key of party σ : $\mathbf{pk}_{\sigma} \equiv g^{-sk_{\sigma}} \pmod{N^{w+1}}$

Joint public key: $\mathbf{pk} \equiv \mathbf{g}^{-sk} \equiv \mathbf{pk_A}^{sk_B} \equiv \mathbf{pk_B}^{sk_A} \pmod{N^{w+1}}$

Input share before:
$$\begin{pmatrix} \operatorname{Enc}_{pk}(\mathbf{x} \cdot \mathbf{sk}) & (\operatorname{mod} \mathbf{N}^4) \\ \operatorname{Enc}_{nk}(\mathbf{x}) & (\operatorname{mod} \mathbf{N}^2) \end{pmatrix}$$

Easy to synchronize $Enc_{nk}(x \cdot sk)$:

$$\operatorname{Enc}_{\mathbf{pk}}(\mathbf{x} \cdot \mathbf{sk}) = \operatorname{Mul}(\operatorname{Enc}_{\mathbf{pk_A}}(\mathbf{x} \cdot \mathbf{sk_A}), \mathbf{sk_B})$$

Hard to synchronize $\frac{Enc_{nk}(x)}{}$:

$$\operatorname{Enc}_{\mathbf{pk}}(\mathbf{x}) = \operatorname{Enc}_{\mathbf{pk}}(\mathbf{x} \cdot \mathbf{sk}_{\mathbf{B}}) = \operatorname{Mul}(\operatorname{Enc}_{\mathbf{pk}_{\mathbf{A}}}(\mathbf{x}), \mathbf{sk}_{\mathbf{B}})$$

Requires
$$sk_B = sk_B' \cdot N + 1$$
 (Likewise for sk_A)

Problem: large joint secret key:

$$|\mathbf{x} \cdot \mathbf{sk}| \approx N^2 \cdot |\mathbf{x}| \cdot |\mathbf{sk}_{\Lambda}'| \cdot |\mathbf{sk}_{R}'| \gg N^2$$

For $\mathrm{Enc}_{\mathrm{pk}}(\mathbf{x}\cdot\mathbf{sk})$ to decrypt correctly, need modulus N⁴ even when we use short exponents: $|\mathbf{sk}_{\sigma}'|\approx 2^{2\lambda}$.

Cheatsheet

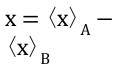
Secret keys of Alice and Bob: sk_A , sk_B

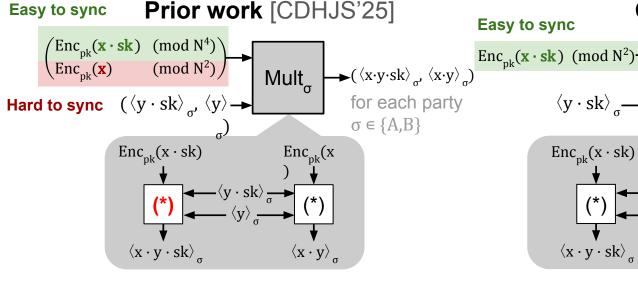
Joint secret key: $sk = sk_A \cdot sk_B$

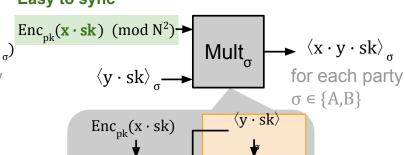
Public key of party σ : $\mathbf{pk}_{\sigma} \equiv \mathbf{g}^{-sk_{\sigma}} \pmod{N^{w+1}}$ Joint public key: $\mathbf{pk} \equiv \mathbf{g}^{-sk} \equiv \mathbf{pk}_{\mathbf{A}}^{sk_{B}} \equiv \mathbf{pk}_{\mathbf{B}}^{sk_{A}} \pmod{N^{w+1}}$

Making Share Synchronization Easier

Notation







Our work

Key procedure of our work

We do not need arithmetic mod N⁴.

(*) : two exponentiations mod N⁴

(*)

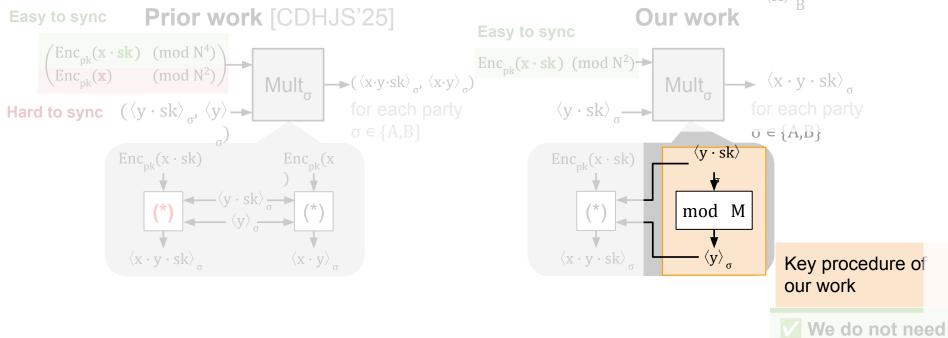
: two exponentiations mod N²

mod M

Making Share Synchronization Easier

Notation $x = \langle x \rangle_A - \langle x \rangle_A$

arithmetic mod N4.



(*) : two exponentiations mod N⁴

(*) : two exponentiations mod N²

Notation

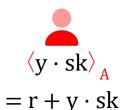
$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$

Notation

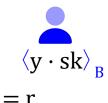
$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



Precondition: Parties hold random shares Achievable by applying a public random offset

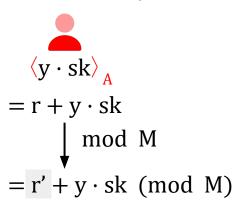
$$r \leftarrow \$ \{0, ..., N-1\}$$



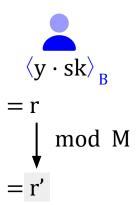
Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



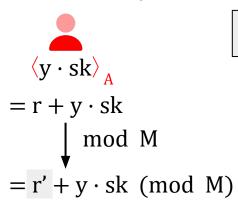
$$r \leftarrow \$ \{0, ..., N-1\}$$



Notation

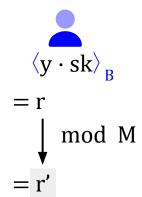
$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{R}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



Pick $M \le N \cdot 2^{-\lambda}$

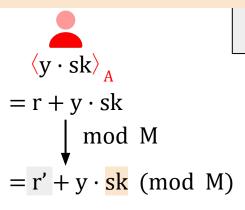
$$r \leftarrow \$ \{0, ..., N-1\}$$



Observe: $r' \approx_s \{0, ..., M-1\}$

Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$



Pick $M \le N \cdot 2^{-\lambda}$

$$r \leftarrow \$ \{0, ..., N-1\}$$

$$\langle y \cdot sk \rangle_{B}$$

$$= r$$

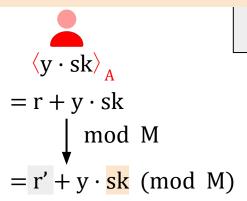
$$\downarrow \mod M$$

$$= r'$$

Observe: $r' \approx_s \{0, ..., M-1\}$

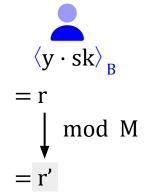
Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{R}}$$



Pick $M \le N \cdot 2^{-\lambda}$

$$r \leftarrow \$ \{0, ..., N-1\}$$



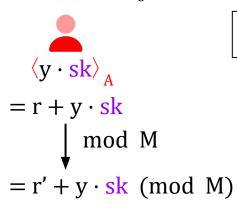
Idea: What if $sk \equiv 1 \pmod{M}$?

Observe: $r' \approx_s \{0, ..., M-1\}$

Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



Pick $M \le N \cdot 2^{-\lambda}$

$$r \leftarrow \$ \{0, ..., N-1\}$$

Sample sk_A , sk_B like in [CDHJS'25], except with M instead of N: $sk'_{\sigma} \leftarrow \$ \{0, ..., 2^{2\lambda} - 1\}$

 $sk_{\sigma} = sk'_{\sigma} \cdot M + 1$

$$\langle y \cdot sk \rangle_{B}$$

$$= r$$

$$\downarrow \mod M$$

$$= r'$$

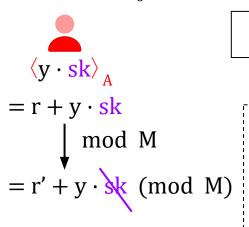
$$r' \approx_s \{0, \dots, M-1\}$$

 $r' := r \mod M$

Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



Pick $M \le N \cdot 2^{-\lambda}$

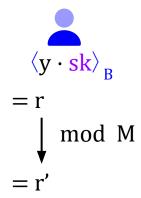
$$r \leftarrow \$ \{0, ..., N-1\}$$

Sample sk_A , sk_B like in [CDHJS'25], except with M instead of N: $sk'_{\sigma} \leftarrow \$ \{0, ..., 2^{2\lambda} - 1\}$ $sk_{\sigma} = sk'_{\sigma} \cdot M + 1$

 \Rightarrow sk := sk_A · sk_B \equiv 1 (mod M)

$$r' \approx_s \{0, \dots, M-1\}$$

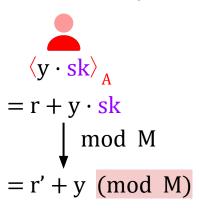
 $r' := r \mod M$



Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

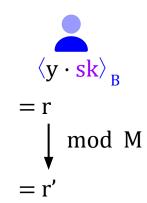
Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



Pick $M \le N \cdot 2^{-\lambda}$

 $r \leftarrow \$ \{0, ..., N-1\}$

Problem: subtractive shares must be over the integers



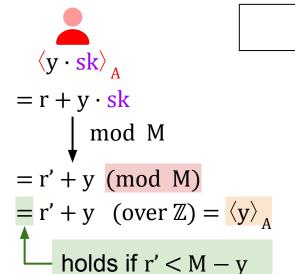
$$r' \approx_s \{0, \dots, M-1\}$$

 $r' := r \mod M$

Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{A} - \langle \mathbf{x} \rangle_{B}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



Pick $M \le N \cdot 2^{-\lambda}$

$$r \leftarrow \$ \{0, ..., N-1\}$$

$$\langle y \cdot sk \rangle_{B}$$

$$= r$$

$$\downarrow \mod M$$

$$= r' = \langle y \rangle_{B}$$

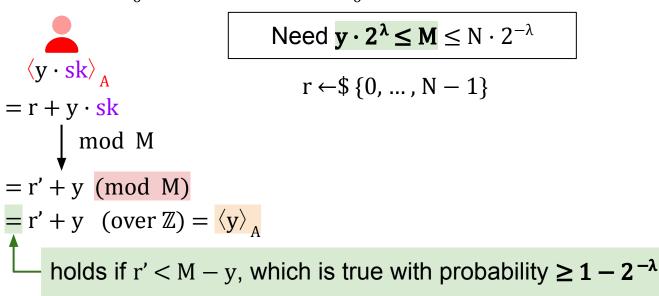
$$r' \approx_{s} \{0, ..., M-1\}$$

 $r' := r \mod M$

Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{R}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



 $\langle y \cdot sk \rangle_{R}$ mod M $= r' = \langle y \rangle_{R}$

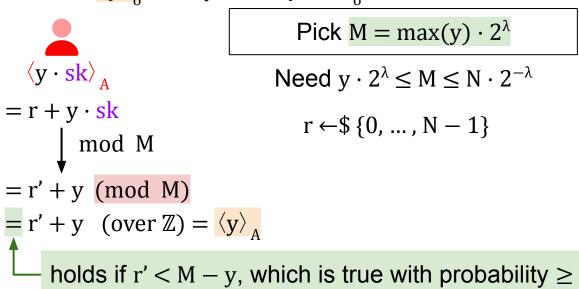
$$r' \approx \{0, ..., M-1\}$$

$$r' := r \mod M$$

Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\Lambda} - \langle \mathbf{x} \rangle_{R}$$

Goal: derive $\langle y \rangle_{G}$ locally from $\langle y \cdot sk \rangle_{G}$



 $\langle \mathbf{y} \cdot \mathbf{s} \mathbf{k} \rangle_{\mathbf{R}}$ mod M $= r' = \langle y \rangle_{R}$

holds if r' < M - y, which is true with probability $\ge 1 - 2^{-\lambda}$

$$r' \approx \{0, ..., M-1\}$$

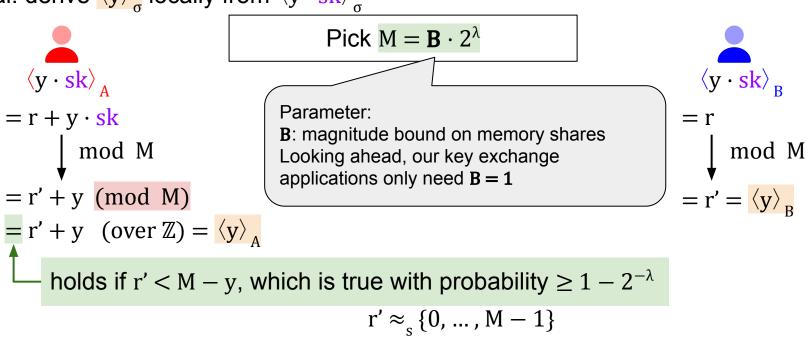
$$r' := r \mod M$$

Simplifying Memory Shares (This Work)

Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



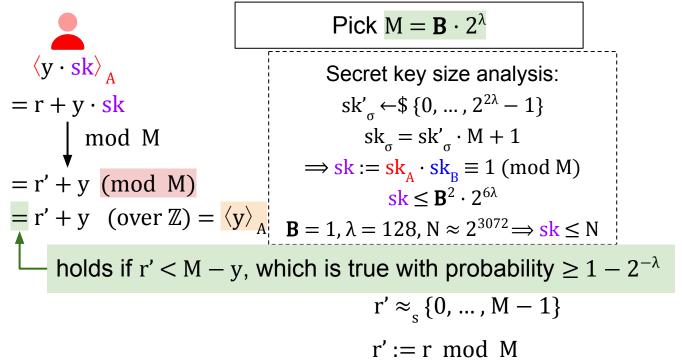
 $r' := r \mod M$

Simplifying Memory Shares (This Work)

Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



$$\langle y \cdot sk \rangle_{B}$$

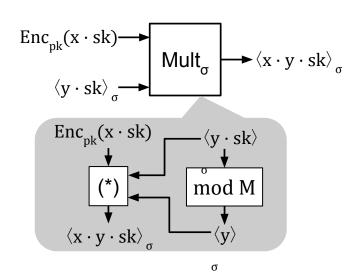
$$= r$$

$$\downarrow \mod M$$

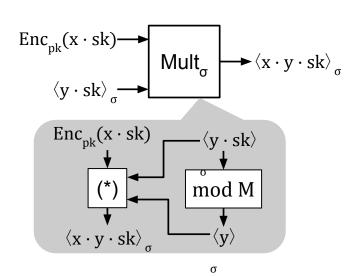
$$= r' = \langle y \rangle_{B}$$

Recall our scheme

Running time of (*) \approx two modular exponentiations

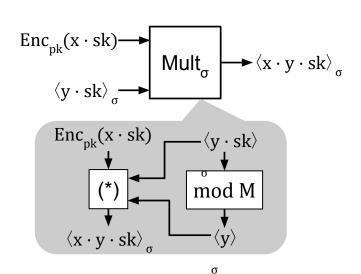


Recall our scheme



Running time of (*) ≈ two modular exponentiations More precisely, this is the bottleneck:

Recall our scheme

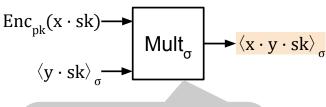


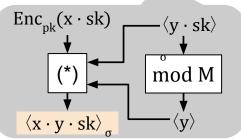
Running time of (*) \approx two modular exponentiations More precisely, this is the bottleneck:

$$ct_0^{\langle y \cdot sk \rangle_{\sigma}} \cdot ct_1^{\langle y \rangle_{\sigma}} \quad (mod)$$
where we unpack $Enc_{pk}(x \cdot sk) = (ct_0, ct_1)$

Time to compute modular exponentiation scales ~ linearly with the length of the exponent

Recall our scheme





Running time of (*) ≈ two modular exponentiations More precisely, this is the bottleneck:

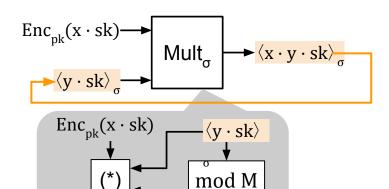
Output of (*) is:

 $\log_2(N) \approx 3072 \text{ bits}$

Time to compute modular exponentiation scales ~ linearly with the length of the exponent

Recall our scheme

 $\langle \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{s} \mathbf{k} \rangle$



Running time of (*) ≈ two modular exponentiations More precisely, this is the bottleneck:

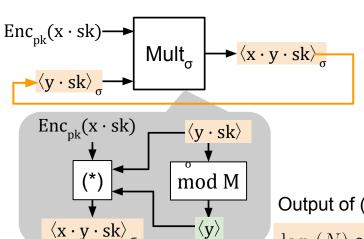
$$\begin{array}{c} \operatorname{ct_0}^{\langle y \cdot \operatorname{sk} \rangle_\sigma} \cdot \operatorname{ct_1}^{\langle y \rangle_\sigma} \quad \text{(mod)} \\ \text{where we unpack } \operatorname{Enc_{pk}}(x \cdot \operatorname{sk}) = (\operatorname{ct_0}, \operatorname{ct_1}) \\ \\ \text{3072 bits} \end{array}$$

Output of (*) is:

 $\log_2(N) \approx 3072 \text{ bits}$

Time to compute modular exponentiation scales ~ linearly with the length of the exponent

Recall our scheme



Running time of (*) \approx two modular exponentiations More precisely, this is the bottleneck:

$$\operatorname{ct_0}^{\langle y \cdot \operatorname{sk} \rangle_{\sigma}} \cdot \operatorname{ct_1}^{\langle y \rangle_{\sigma}} \pmod{\sigma}$$

where we unpack $\operatorname{Enc}_{\operatorname{pk}}(\mathbf{x} \cdot \mathbf{sk}) = (\operatorname{ct}_{0}, \operatorname{ct}_{1})$

3072 bits

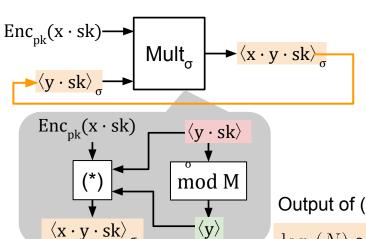
 $\log_2(B) + \lambda \approx 128$ bits thanks to our mod M procedure

Output of (*) is:

 $\log_2(N) \approx 3072$ bits

Time to compute modular exponentiation scales ~ linearly with the length of the exponent

Recall our scheme



Running time of (*) \approx two modular exponentiations More precisely, this is the bottleneck:

$$\operatorname{ct_0}^{\langle y \cdot \operatorname{sk} \rangle_{\sigma}} \cdot \operatorname{ct_1}^{\langle y \rangle_{\sigma}} \pmod{\sigma}$$

where we unpack $\operatorname{Enc}_{\operatorname{pk}}(\mathbf{x} \cdot \mathbf{sk}) = (\operatorname{ct}_{0}, \operatorname{ct}_{1})$

3072 bits

 $\log_2(B) + \lambda \approx 128$ bits thanks to our mod M procedure

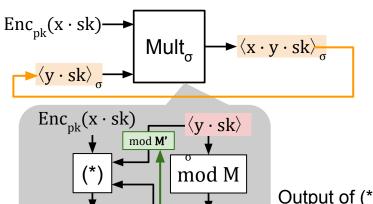
Output of (*) is:

 $\log_2(N) \approx 3072$ bits

Time to compute modular exponentiation scales ~ linearly with the length of the exponent

Recall our scheme

 $\langle \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{sk} \rangle$



Running time of (*) \approx two modular exponentiations More precisely, this is the bottleneck:

$$\operatorname{ct_0}^{\langle y \cdot \operatorname{sk} \rangle_{\sigma}} \cdot \operatorname{ct_1}^{\langle y \rangle_{\sigma}} \pmod{\sigma}$$

where we unpack $\operatorname{Enc}_{\mathrm{pk}}(\mathbf{x} \cdot \mathbf{sk}) = (\operatorname{ct}_{0}, \operatorname{ct}_{1})$

3072 bits

 $\log_2(B) + \lambda \approx 128$ bits thanks to our mod M procedure

Output of (*) is:

 $\log_2(N) \approx 3072$ bits

Time to compute modular exponentiation scales ~ linearly with the length of the exponent

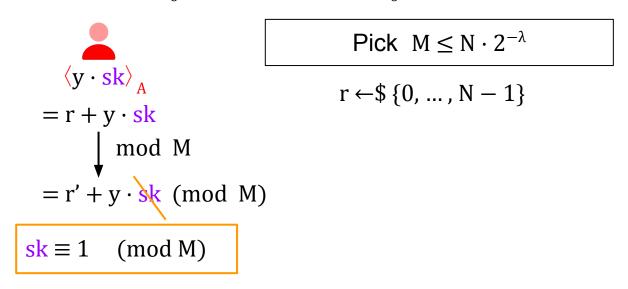
Idea: Use the same "mod M" trick, but use a larger modulus M'

Recall: Simplifying memory shares (this work)

Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

Goal: derive $\langle y \rangle_{\sigma}$ locally from $\langle y \cdot sk \rangle_{\sigma}$



$$\langle y \cdot sk \rangle_{B}$$

$$= r$$

$$\downarrow \mod M$$

$$= r'$$

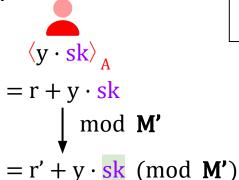
$$r' \approx_s \{0, \dots, M-1\}$$

 $r' := r \mod M$

Shortening memory shares (this work)

Goal: derive a shorter share $\langle y \cdot sk \rangle_{\sigma}$, of length $\log_2(\mathbf{M'})$

bits.



 $= r + y \cdot sk \pmod{M}$

 $(\text{mod } \mathbf{M'})$

$$sk \equiv 1 \pmod{M}$$

 $sk \not\equiv 1$

Pick $M' \le N \cdot 2^{-\lambda}$

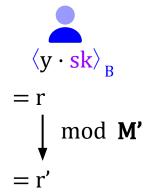
$$r \leftarrow \$ \{0, ..., N-1\}$$

$$r' \approx_{c} \{0, ..., M' - 1\}$$

$$r' := r \mod \mathbf{M'}$$

Notation

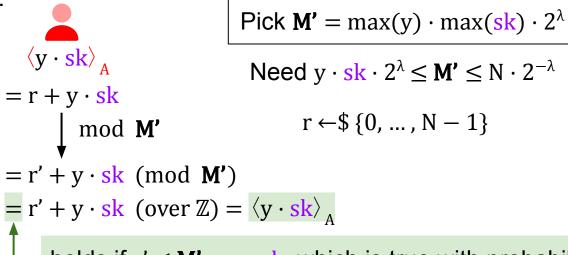
$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$



Shortening memory shares (this work)

Goal: derive a shorter share $\langle y \cdot sk \rangle_{\sigma}$, of length $\log_2(\mathbf{M'})$

bits.



Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

$$\langle \mathbf{y} \cdot \mathbf{sk} \rangle_{\mathbf{B}}$$

$$= \mathbf{r}$$

$$\downarrow \mod \mathbf{M'}$$

$$= \mathbf{r'} = \langle \mathbf{y} \cdot \mathbf{sk} \rangle_{\mathbf{B}}$$

holds if $r' < M' - y \cdot sk$, which is true with probability $\ge 1 - 2^{-\lambda}$

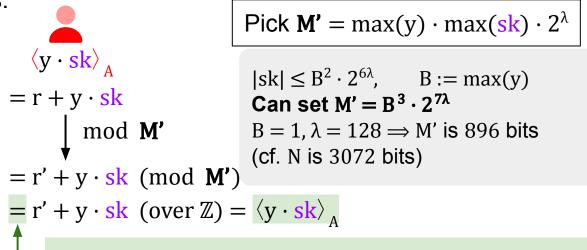
$$r' \approx_{s} \{0, ..., M' - 1\}$$

$$r' := r \mod \mathbf{M'}$$

Shortening memory shares (this work)

Goal: derive a shorter share $\langle y \cdot sk \rangle_{\sigma}$, of length $\log_2(\mathbf{M'})$

bits.



Notation

$$\mathbf{x} = \langle \mathbf{x} \rangle_{\mathbf{A}} - \langle \mathbf{x} \rangle_{\mathbf{B}}$$

$$\langle \mathbf{y} \cdot \mathbf{sk} \rangle_{\mathbf{B}}$$

$$= \mathbf{r}$$

$$\downarrow \mod \mathbf{M'}$$

$$= \mathbf{r'} = \langle \mathbf{y} \cdot \mathbf{sk} \rangle_{\mathbf{B}}$$

holds if $r' < M' - y \cdot sk$, which is true with probability $\geq 1 - 2^{-\lambda}$

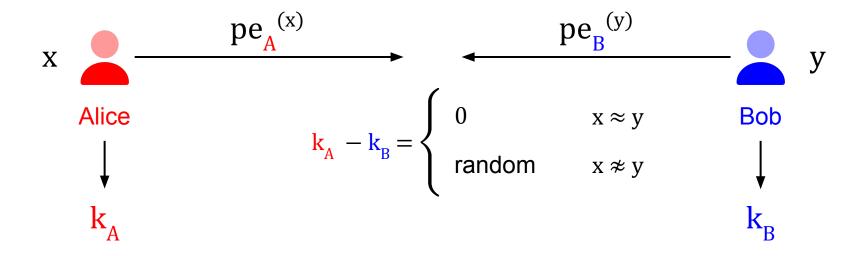
$$r' \approx_{\varsigma} \{0, ..., M' - 1\}$$

$$r' := r \mod \mathbf{M'}$$

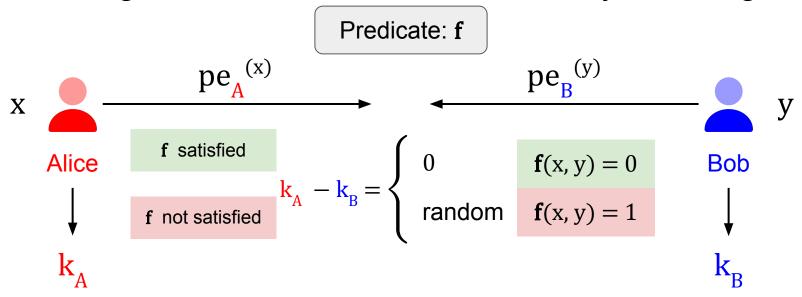
Roadmap

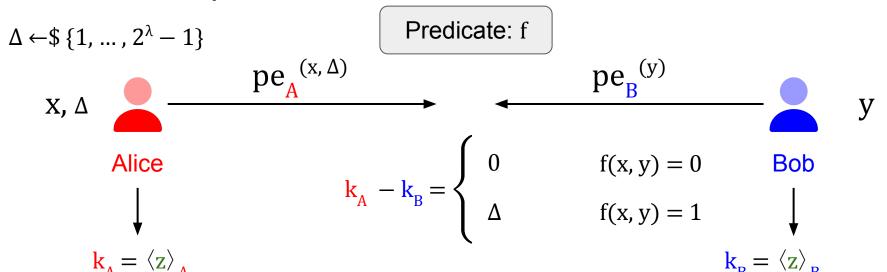
- 1. Overview of our work
- 2. MKHSS optimizations
- 3. Non-interactive conditional key exchange optimizations
- 4. Useful instantiations of key exchange
 - a. Fuzzy PAKE
 - b. Geolocation-based key exchange
- 5. Performance evaluation
- 6. Future works and conclusion

Non-Interactive Conditional Key Exchange [CDHJS'25]

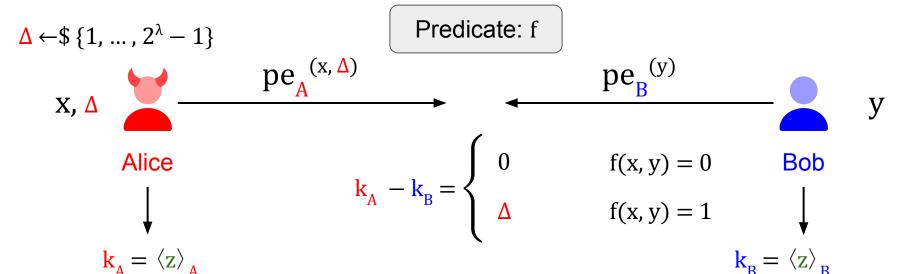


Formalizing Non-Interactive Conditional Key Exchange [CDHJS'25]





$$z = f(x,y) \cdot \Delta$$



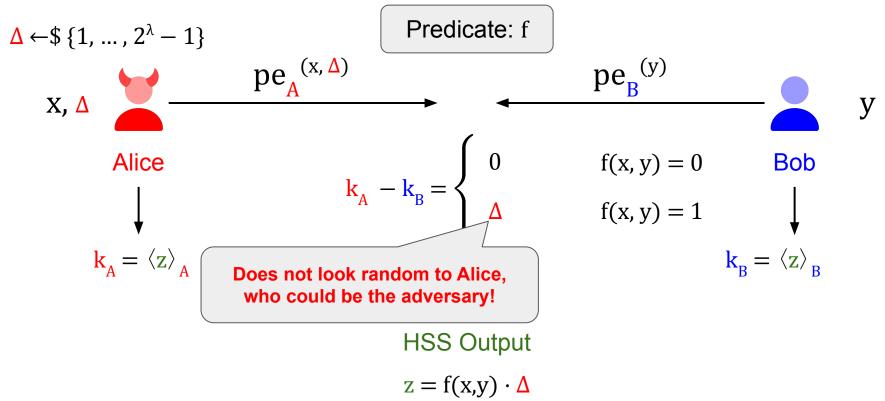
Attack

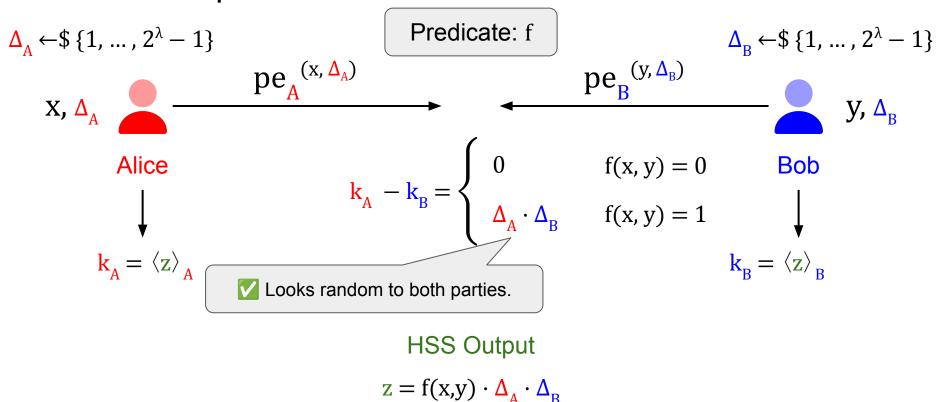
Even if predicate is not satisfied (f(x,y) = 1), Alice can still compute:

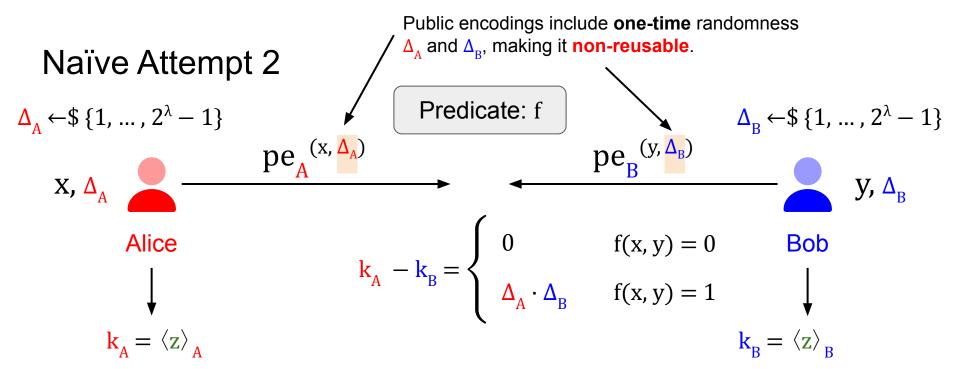
$$k_B = k_A - \Delta$$

HSS Output

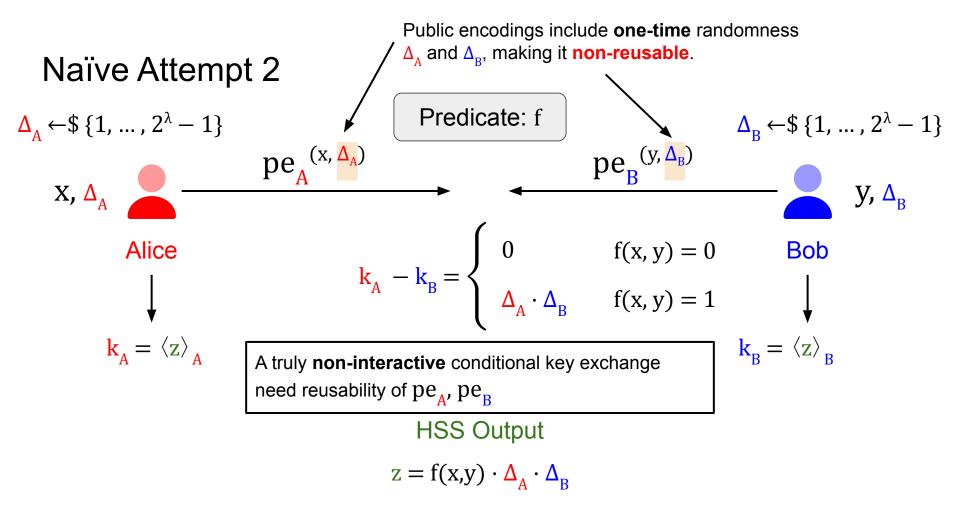
$$z = f(x,y) \cdot \Delta$$



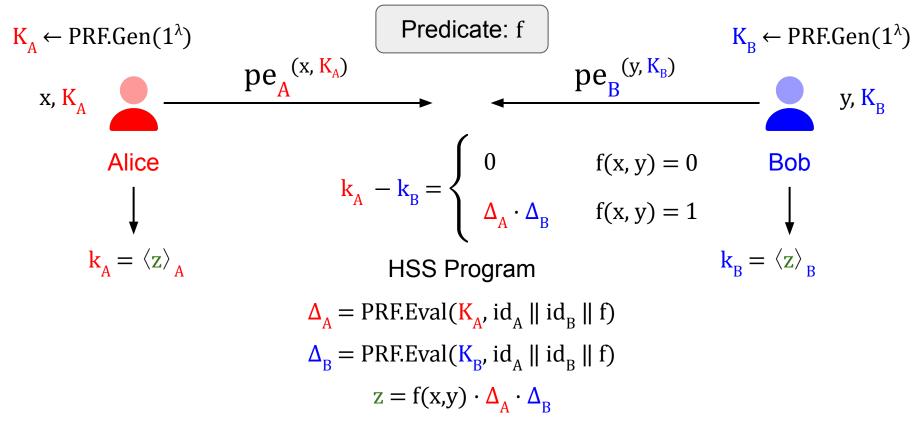




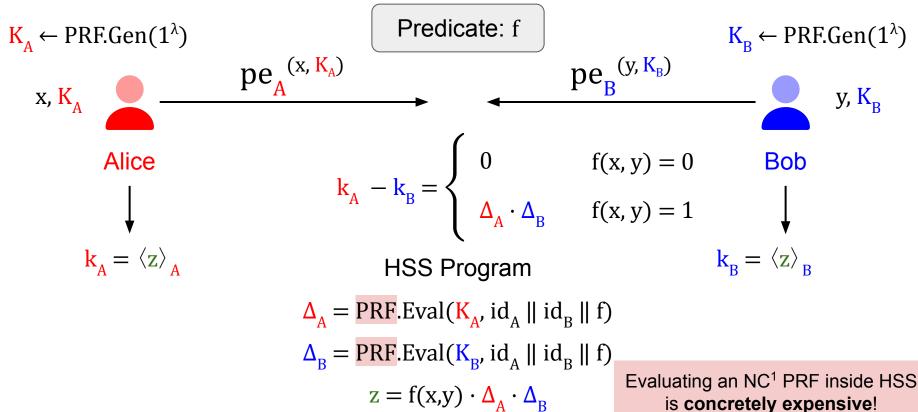
$$z = f(x,y) \cdot \underline{\Delta}_A \cdot \underline{\Delta}_B$$



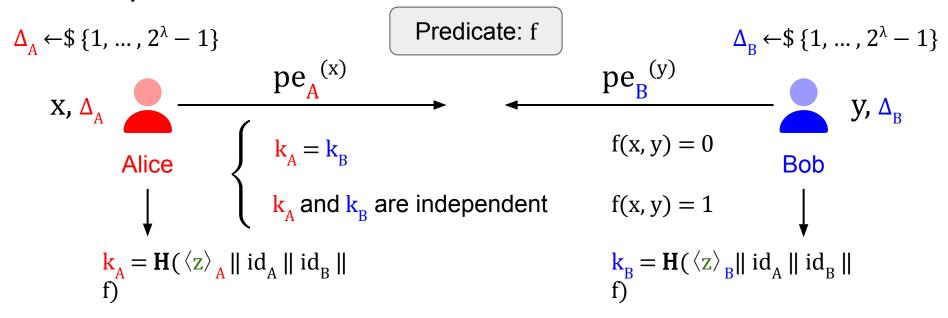
Solution by Prior Work: Use a PRF [CDHJS'25]



Solution by Prior Work: Use a PRF [CDHJS'25]



Our Optimization #1: Use a Hash Outside of HSS Instead



HSS Output

$$z = f(x,y) \cdot \underline{\Delta}_{A} \cdot \underline{\Delta}_{B}$$

Our Optimization #1: Use a Hash Outside of HSS Instead

HSS Output

$$z = f(x,y) \cdot \underline{\Delta}_{A} \cdot \underline{\Delta}_{B}$$

Inefficiency: Need HSS to Support Large Integer Values

HSS Output

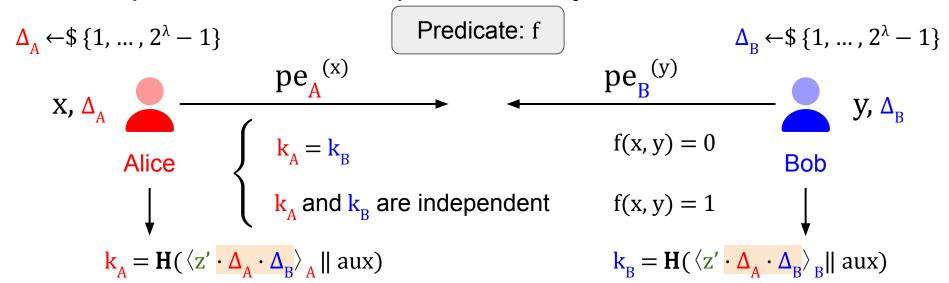
$$aux := id_A \parallel id_B \parallel f$$

$$z = f(x,y) \cdot \Delta_A \cdot \Delta_B \in \{0, ..., 2^{2\lambda} - 1\}$$

Inefficiency: Need HSS to Support Large Integer Values

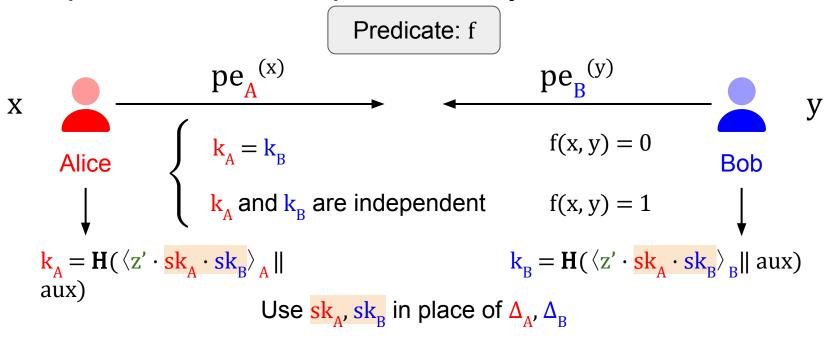
$$\begin{array}{c|c} \Delta_{A} \leftarrow \$ \left\{ 1, \ldots, 2^{\lambda} - 1 \right\} & \text{Predicate: f} & \Delta_{B} \leftarrow \$ \left\{ 1, \ldots, 2^{\lambda} - 1 \right\} \\ X, \Delta_{A} & pe_{A}^{(x)} & pe_{B}^{(y)} \\ & \downarrow & k_{A} = k_{B} & f(x,y) = 0 \\ & k_{A} \text{ and } k_{B} \text{ are independent} & f(x,y) = 1 \\ & k_{A} = H(\left\langle z \right\rangle_{A} \parallel \text{aux}) & k_{B} = H(\left\langle z \right\rangle_{B} \parallel \text{aux}) \\ & \text{Need to set B} = \mathbf{2}^{2\lambda}, \text{ reducing concrete efficiency} \end{array}$$

 $aux := id_A \parallel id_B \parallel f \qquad \qquad z = f(x,y) \cdot \Delta_A \cdot \Delta_R \in \{0, \dots, 2^{2\lambda} - 1\}$



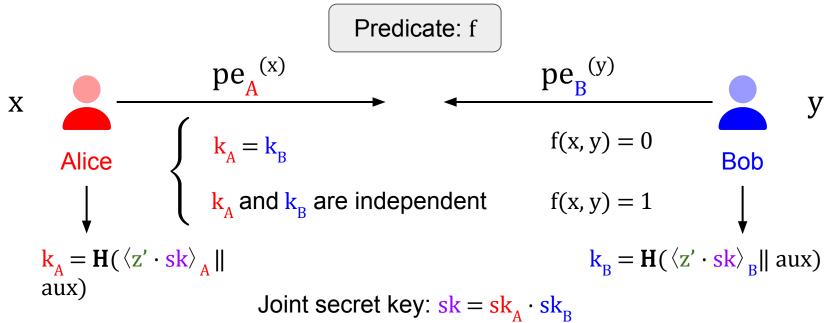
Function Output

$$z' = f(x,y)$$



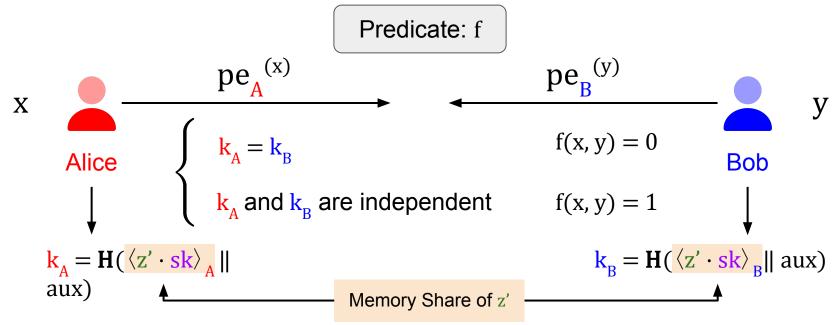
Function Output

$$z' = f(x,y)$$



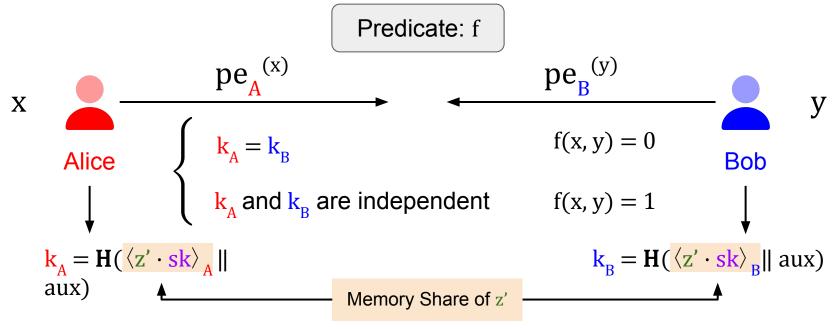
Function Output

$$z' = f(x,y)$$



MKHSS Output

$$z' = f(x,y)$$



MKHSS Output

$$z' = f(x,y) \in \{0,1\}$$

Output is a single bit: B = 1 is possible

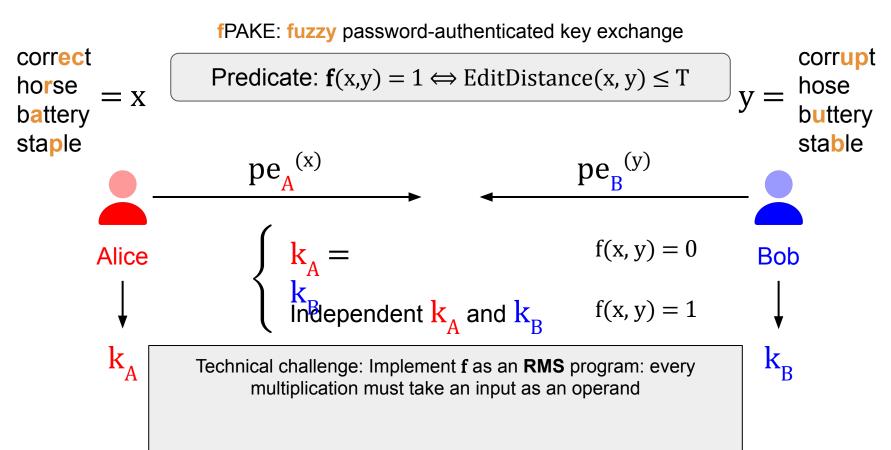
Roadmap

- 1. Overview of our work
- 2. MKHSS optimizations
- 3. Non-interactive conditional key exchange optimizations
- 4. Useful instantiations of key exchange
 - a. Fuzzy PAKE
 - b. Geolocation-based key exchange
- 5. Performance evaluation
- 6. Future works and conclusion

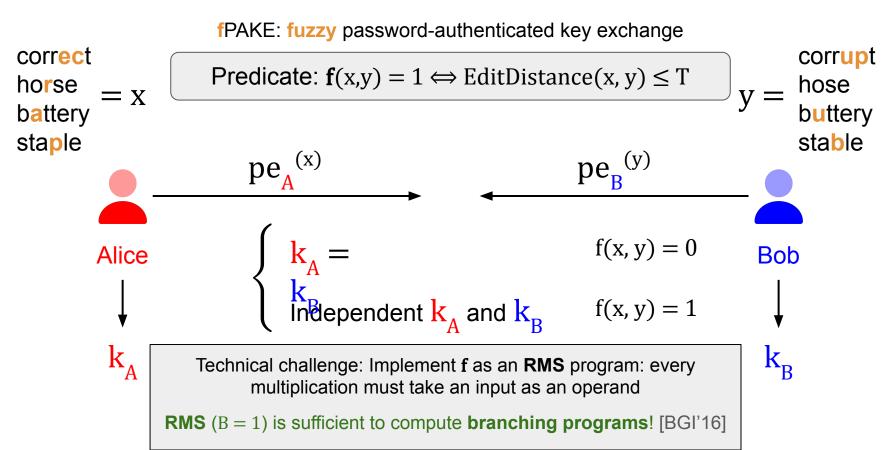
Concrete Instantiation: fPAKE [DHPRY'18]

fPAKE: fuzzy password-authenticated key exchange correct corrupt Predicate: $f(x,y) = 1 \Leftrightarrow EditDistance(x,y) \leq T$ horse hose buttery battery staple stable f(x, y) = 0Alice Bob f(x, y) = 1Independent $k_{\text{\tiny A}}$ and $k_{\text{\tiny D}}$

Concrete Instantiation: fPAKE



Concrete Instantiation: fPAKE



Our contribution: compute useful fuzziness metrics

Useful fuzziness metric: Hamming distance

```
 \begin{array}{ll} x &= \mathsf{correct} \ \mathsf{horse} \ \mathsf{battery} \ \mathsf{staple} \\ y &= \mathsf{corrupt} \ \mathsf{house} \ \mathsf{buttery} \ \mathsf{stable} \\ x \approx y \Longleftrightarrow \mathsf{HD}(x,y) \leq T \end{array}
```

Our contribution: compute useful fuzziness metrics

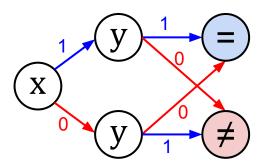
Useful fuzziness metric: Hamming distance

```
x = correct horse battery staple 
 <math>y = corrupt house buttery stable 
 (HD(x, y) = 4)
```

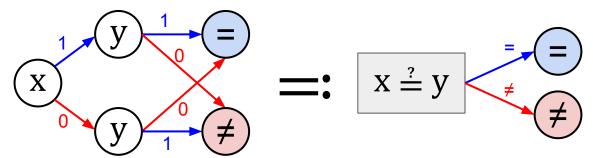
$$x \approx y \Leftrightarrow HD(x, y) \leq T$$

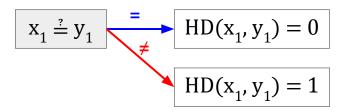
As a warmup, we show how to compute this for binary strings.

Bit equality: $X \stackrel{?}{=} Y$



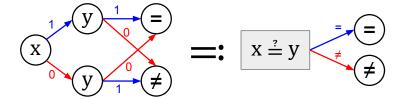
Bit equality: $X \stackrel{?}{=} Y$

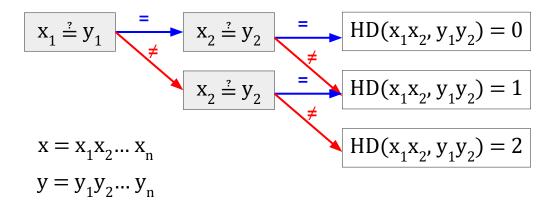


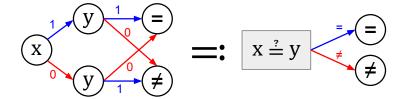


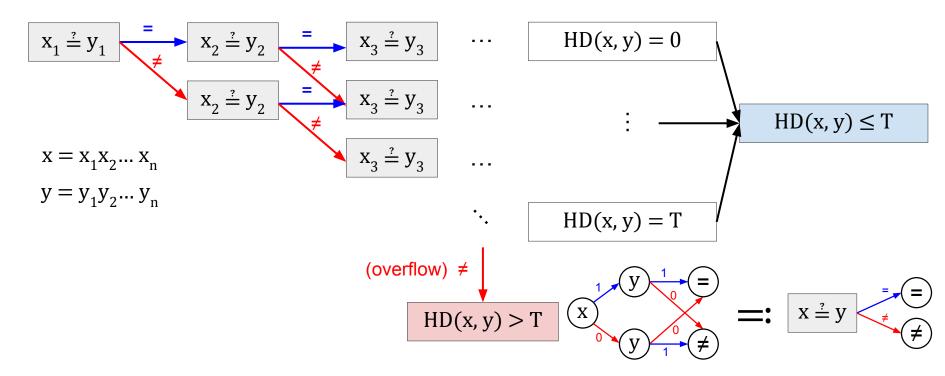
$$\mathbf{x} = \mathbf{x_1} \mathbf{x_2} ... \mathbf{x_n}$$

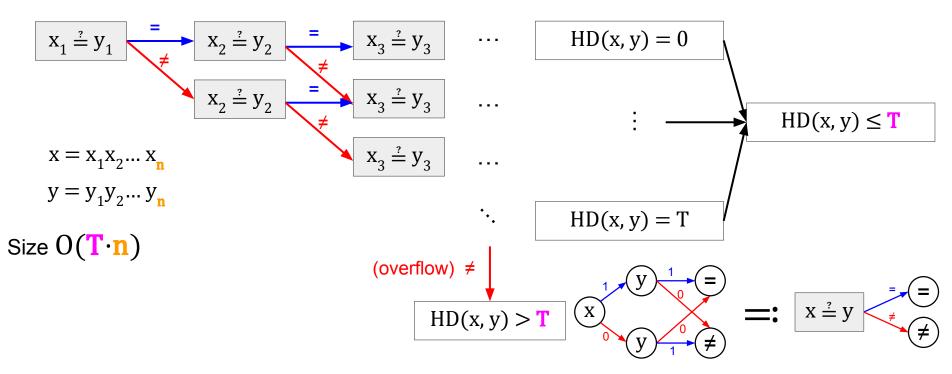
$$y = y_1 y_2 ... y_n$$

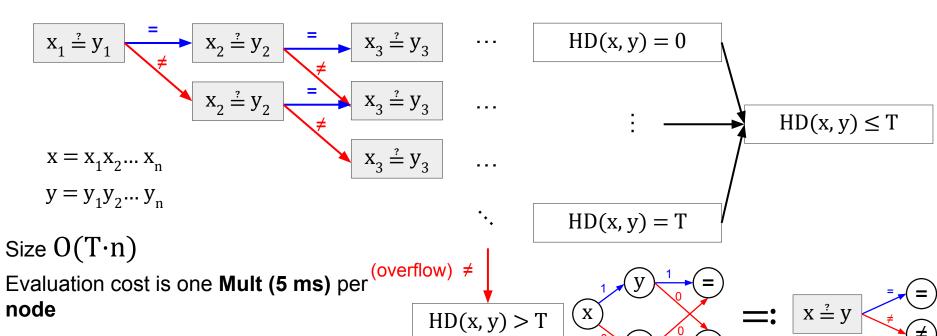




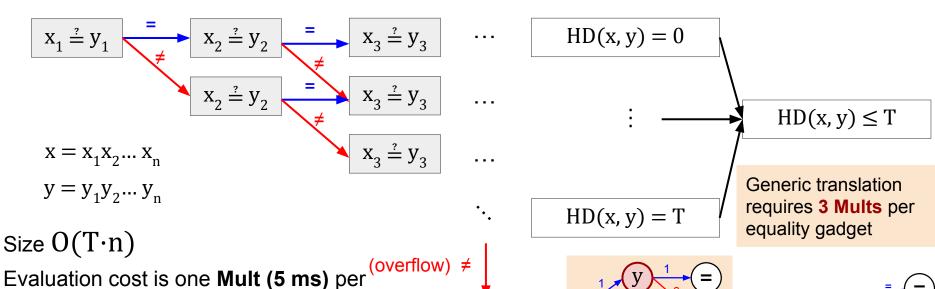








Threshold Hamming distance: $HD(x, y) \stackrel{?}{\leq} T$



HD(x, y) > T

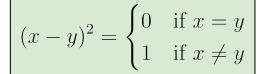
 $x \stackrel{?}{=} y$

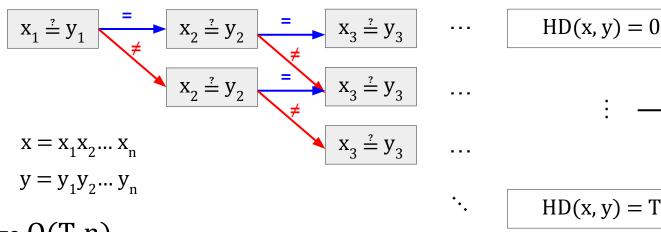
Evaluation cost is one **Mult (5 ms node** via generic translation from

branching programs [BCGIO'17]

(overflow) ≠

Threshold Hamming distance: $HD(x, y) \stackrel{?}{\leq} T$





HD(x, y) = T

We compute using 2 Mults instead of 3:

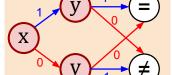
 $HD(x, y) \leq T$

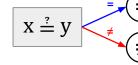
Idea: Compute $(x-y)^2$

Size $O(T \cdot n)$

Evaluation cost is one Mult (5 ms) per **node** via generic translation from branching programs [BCGIO'17]

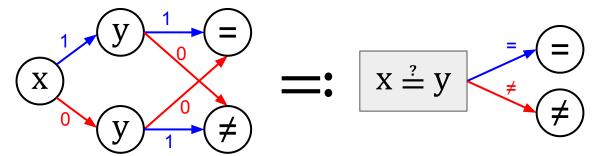
HD(x, y) > T





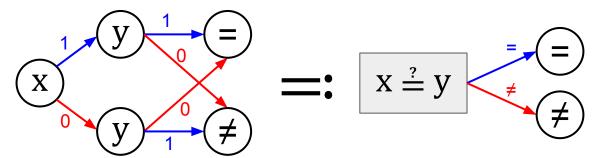
Generalization: Hamming distance over any alphabet

Recall bit equality: $X \stackrel{?}{=} Y$



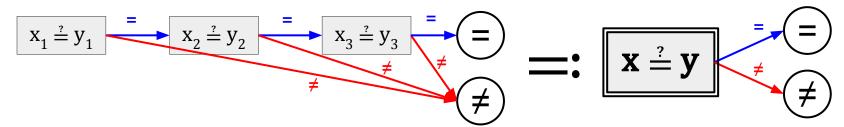
Generalization: Hamming distance over any alphabet

Recall bit equality: $X \stackrel{?}{=} Y$



Character equality: $\mathbf{X} \stackrel{?}{=} \mathbf{y}$

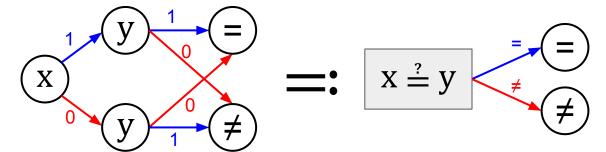
(Encode each character in binary: $\mathbf{X} = \mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$)



Generalization: Hamming distance over any alphabet

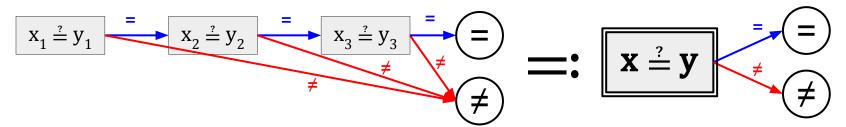
Recall bit equality: $X \stackrel{?}{=} Y$

Can also compute a recursive notion of Hamming distance, which tolerates insertions and deletions better. (See Paper)



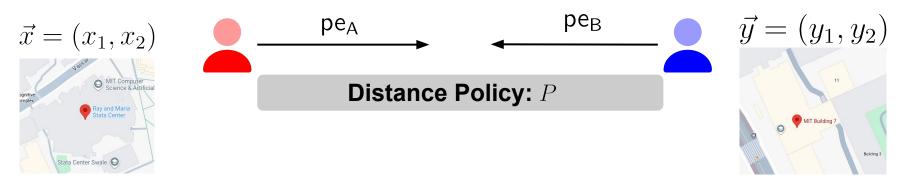
Character equality: $\mathbf{X} \stackrel{?}{=} \mathbf{y}$

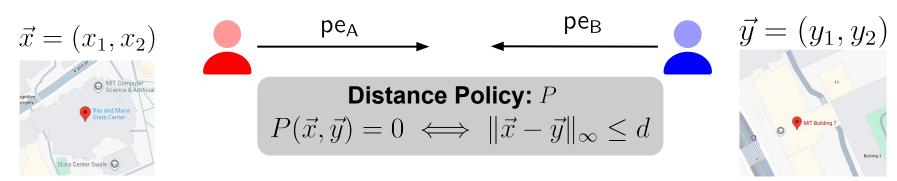
(Encode each character in binary: $\mathbf{X} = \mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$)

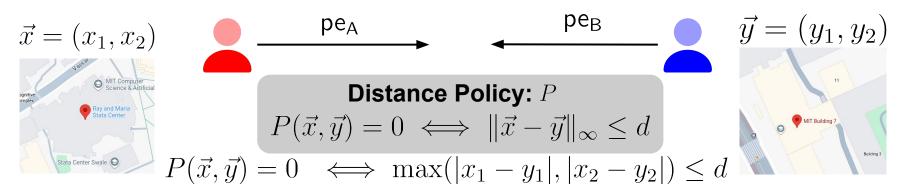


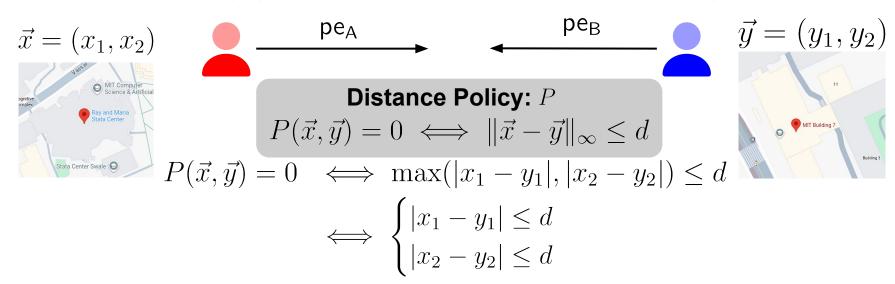
Roadmap

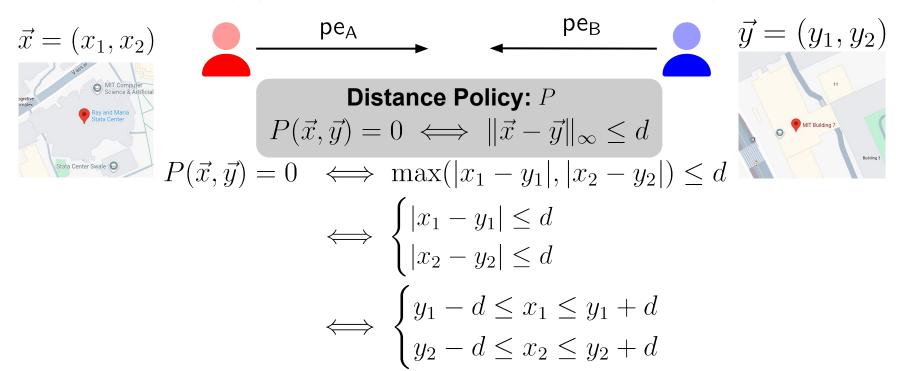
- 1. Overview of our work
- 2. MKHSS optimizations
- 3. Non-interactive conditional key exchange optimizations
- 4. Useful instantiations of key exchange
 - a. Fuzzy PAKE
 - b. Geolocation-based key exchange
- 5. Performance evaluation
- 6. Future works and conclusion

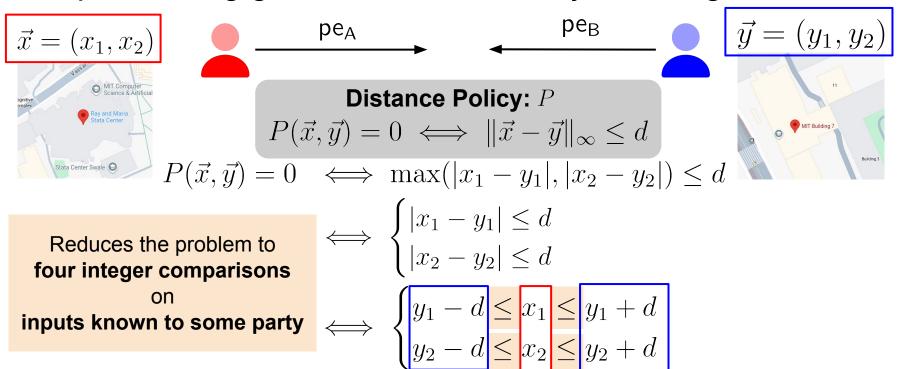




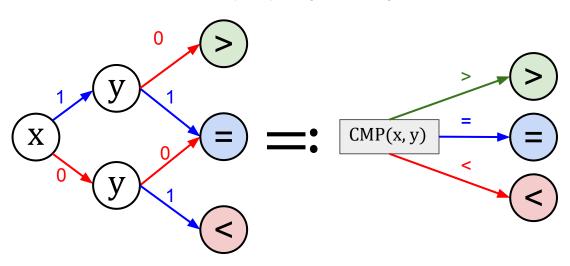




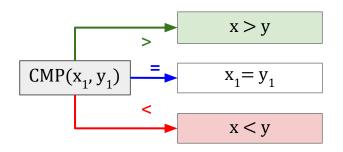




Bit comparison: $CMP(x, y) \in \{<, =, >\}$



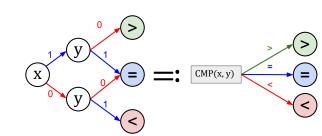
Comparing x and y.



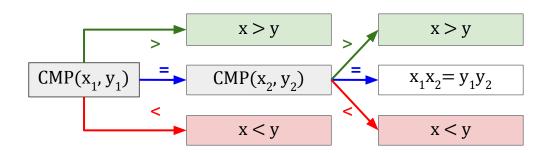
Binary decompositions

bit_decomp(x) =
$$x_1 x_2 ... x_n$$

bit_decomp(y) = $y_1 y_2 ... y_n$



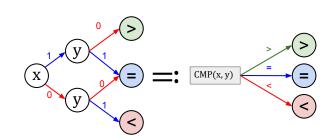
Comparing x and y.



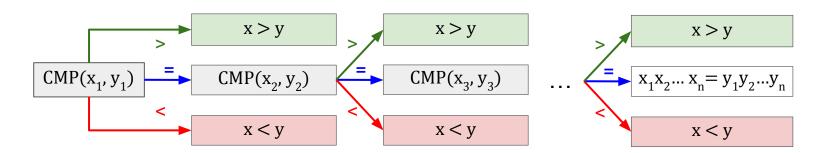
Binary decompositions

bit_decomp(x) =
$$x_1 x_2 ... x_n$$

bit_decomp(y) = $y_1 y_2 ... y_n$



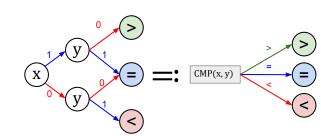
Comparing x and y.



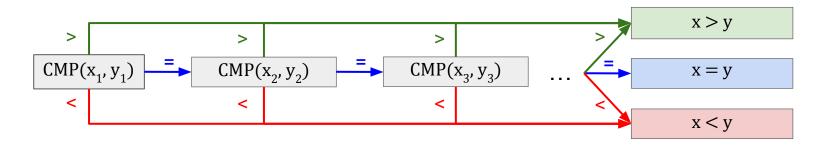
Binary decompositions

bit_decomp(x) =
$$x_1 x_2 ... x_n$$

bit_decomp(y) = $y_1 y_2 ... y_n$



Comparing x and y.

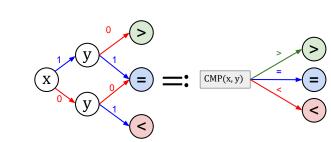


Binary decompositions

bit_decomp(x) =
$$x_1 x_2 ... x_n$$

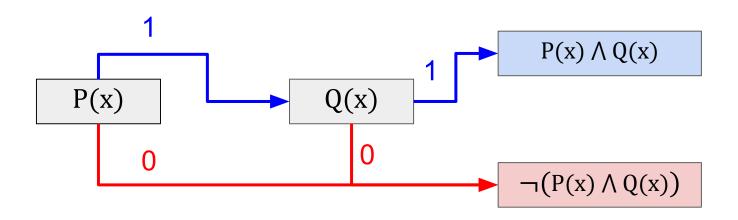
bit_decomp(y) = $y_1 y_2 ... y_n$

Concrete Cost: 3n RMS multiplications

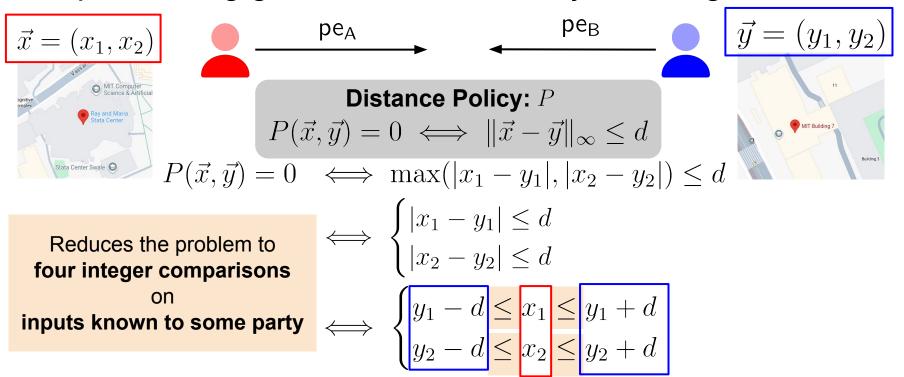


Logical conjunctions

Compute $P(x) \wedge Q(x)$ given branching programs that compute P and Q:



$$Size(P(x) \land Q(x)) = Size(P(x)) + Size(Q(x))$$



Concrete Cost: $4 \times 3n = 12 n$ RMS multiplications

Extension: "multi-factor" key exchange

Can use logical conjunctions to combine geolocation and passphrase

Roadmap

- 1. Overview of our work
- 2. MKHSS optimizations
- 3. Non-interactive conditional key exchange optimizations
- 4. Useful instantiations of key exchange
 - a. Fuzzy PAKE
 - b. Geolocation-based key exchange
- 5. Performance evaluation
- 6. Future works and conclusion

Parameters

Magnitude bound on HSS values: B=1 (sufficient for all of our key exchange applications, which only uses bits)

Security parameter: $\lambda = 128$

Size of modulus N: 3072 bits, sufficient for 128 bits of security

Runtime: Multi-Key HSS encode

Parameter: B = 1 (sufficient for all of our key exchange applications) Recall this means all intermediate HSS values are in $\{-1,0,1\}$

Procedure	Our runtime (ms)	Baseline runtime (ms)	Our speedup
KeyGen	7.0	104.5	15×
EncodeInput	2.6	10.3	4.0×

Time for each party to encode input $\mathbf{x} = (x_1, ..., x_n) \in [-B, B]^n$: Time(KeyGen) + n · Time(EncodeInput)

Runtime: Multi-Key HSS evaluate

Parameter: B = 1

Procedure	Our runtime (ms)	Baseline runtime (ms)	Our speedup
Init (Alice)	4.4	96.4	22×
Init (Bob)	3.1	50.3	16×
SyncSelfShare	1.3	5.2	4×
SyncOtherShare	1.8	61.8	35×
RMS: Addition	9.5 × 10 ⁻³	38.3 × 10 ⁻³	4.0×
RMS: Multiplication	5.0	224.6	45×

Time to run RMS program f(x,y): Time(Init) + $n \cdot \text{Time}(\text{SyncSelfShare}) + m \cdot \text{Time}(\text{SyncSelfShare}) + \text{RMS operations}$

Own input x = $(x_1, ..., x_n) \in [-B, B]^n$

Other party's input $y = (y_1, ..., y_m) \in [-B, B]^m$

Communication: Multi-Key HSS (continued)

Parameter: B = 1

Data	Size (kB)	Size (kB)	Our saving
Transmitted public key	3.1	6.2	2×
Transmitted input share	1.5	4.6	3×

Communication requirement for one party in MKHSS for input $\mathbf{x} = (x_1, ..., x_n) \in [-B, B]^n$:

 $Size(pk) + n \cdot Size(InputShare)$

Communication: Multi-Key HSS

Parameter: B = 1

Data	Size (kB)	Size (kB)	Our saving
Transmitted public key	3.1	6.2	2×
Transmitted input share	1.5	4.6	3×

The 3× reduction comes from a simplification of input shares

Our Input Share

$$\underbrace{ \text{Enc}_{\text{pk}}(x \cdot s) }_{\text{pk}}$$

Baseline Input Share

Bit Length

$$2\log_2(N)$$

 $6\log_2(N)$

Concrete Performance: Fuzzy PAKE Runtime

# chars in password	Bits per char	# typos permitted	Our runtime (sec)	Baseline runtime* (sec)	Our speedup
72	5	2	7.56	252 (~4 mins)	33×
80	16	1	19.7	678 (~11 mins)	34×
120	8	3	27.5	920 (~15 mins)	33×

^{*:} We gave the baseline an advantage by allowing it to use the random-oracle-based construction of key exchange from MKHSS.

Thus the difference is solely due to MKHSS speedups.

Evaluation: Fuzzy PAKE runtime

# chars in password	Bits per char	# typos permitted	Our runtime (sec)	Baseline runtime* (sec)	Our speedup
72	5	2	7.56	252 (~4 mins)	33×
80	16	1	19.7	678 (~11 mins)	34×
120	8	3	27.5	920 (~15 mins)	33×

Further speedup possible with AVX512

[Langowski-Devadas'25]

Our runtime with AVX512 (sec)
3.17
8.47
11.7

Evaluation: Fuzzy PAKE communication

# chars in password	Bits per char	# typos permitted	Our communication cost (MB)	Baseline communication cost (MB)	Our savings
72	5	2	1.1	3.3	3×
80	16	1	3.9	11.8	3×
120	8	3	3.0	8.9	3×

Our **3×** reduction comes from a reduction in the size of input shares of MKHSS

Runtime: Geolocation-Based Key Exchange

# dimensions for coordinate	Precision of coordinate (bits)	Our runtime (sec)	Baseline* runtime (sec)	Our speedup
2	32	1.65	54.1	33×
3	48	3.63	122	33×
4	64	6.46	216	33×

Communication: Geolocation-Based Key Exchange

# dimensions for coordinate	Precision of coordinate (bits)	Our communication cost (kB)	Baseline communication cost (kB)	Our savings
2	32	301.1	897.2	3×
3	48	669.8	2003.1	3×
4	64	1185.9	3551.4	3×

Roadmap

- 1. Overview of our work
- 2. MKHSS optimizations
- 3. Non-interactive conditional key exchange optimizations
- 4. Useful instantiations of key exchange
 - a. Fuzzy PAKE
 - b. Geolocation-based key exchange
- 5. Performance evaluation
- 6. Future works and conclusion

Future directions

- Add malicious security to key exchange with minimal performance overhead?
 - This can be done generically with zero knowledge proofs
- Application of our structural simplification to other HSS protocols? Recall:
 - $\circ \quad (\frac{\mathsf{Enc}(\mathsf{x})}{\mathsf{Enc}(\mathsf{x} \cdot \mathsf{s})}) \to \mathsf{Enc}(\mathsf{x} \cdot \mathsf{s})$
 - $\circ \quad \left(\frac{\langle x \rangle}{\sigma}, \langle x \cdot s \rangle_{\sigma}\right) \to \langle x \cdot s \rangle_{\sigma}$
- Other useful predicates for key exchange?
- Other practical applications of MKHSS?

Thank you!

Paper (Lali's talk): https://ia.cr/2025/094

Paper (Kevin's talk): https://ia.cr/2025/1803

Code: https://github.com/kevin-he-01/mkhss

References

[ADOS'22] D. Abram, I. Damgård, C. Orlandi, and P. Scholl. An algebraic framework for silent preprocessing with trustless setup and active security.

[BCGIO'17] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù. Homomorphic secret sharing: Optimizations and applications.

[BCP'03] E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications.

[BGI'16] E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure computation under DDH.

[CDHJS'25] G. Couteau, L. Devadas, A. Hegde, A. Jain, and S. Servan-Schreiber. Multi-key homomorphic secret sharing.

[DH'76] W. Diffie and M. E. Hellman. New directions in cryptography.

[DHPRY'18] P.-A. Dupont, J. Hesse, D. Pointcheval, L. Reyzin, and S. Yakoubov. Fuzzy password-authenticated key exchange.

[DJ'03] I. Damgård and M. Jurik. A length-flexible threshold cryptosystem with applications.

[FHKP'13] E. S. V. Freire, D. Hofheinz, E. Kiltz, and K. G. Paterson. Non-interactive key exchange.

[Langowski-Devadas'25] S. Langowski and S. Devadas. Efficient modular multiplication using vector instructions on commodity hardware.